Những câu hỏi liên quan
LM
Xem chi tiết
PT
17 tháng 12 2021 lúc 19:45

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

Bình luận (0)
LM
Xem chi tiết
PT
17 tháng 12 2021 lúc 19:43

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
NQ
6 tháng 12 2015 lúc 19:09

Đặt UCLN(3n + 1 ; 5n + 2) = d

3n + 1 chia hết cho d => 15n + 5 chia hết cho d

5n + 2 chia hết cho d => 15 n + 4 chia hết cho d

Mà UCLN(15n + 4 ; 15n + 5) = 1 => d = 1

Vậy ..............................................

Bình luận (0)
H24
6 tháng 12 2015 lúc 19:11

vậy gì .......

Bình luận (0)
TM
Xem chi tiết
NT
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

Bình luận (0)
HT
Xem chi tiết
NT
26 tháng 10 2021 lúc 20:01

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Bình luận (0)
NA
Xem chi tiết
DA
9 tháng 11 2017 lúc 21:25

Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có: 
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d thuộc ( 1; -1) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

Bình luận (0)
DA
9 tháng 11 2017 lúc 21:26

 Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

Bình luận (0)
SG
Xem chi tiết
DH
11 tháng 8 2016 lúc 10:30

Giả sử 5n+2 và 3n+1 chia hết cho d

=> 3(5n+1) = 15n + 6 chia hết cho d

và 5(3n+1) = 15n +5 chia hết cho d

     ta có: 15n+6 - (15n+5) = 1chia hết cho d

 suy ra d=1

vậy 5n+2 và 3n+1 nguyên tố cùng nhau

Bình luận (0)
TU
Xem chi tiết
NT
9 tháng 11 2023 lúc 19:05

a: Gọi d là ước chung lớn nhất của 3n+4 và n+1

=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)

=>\(3n+4-3n-3⋮d\)

=>\(1⋮d\)

=>d=1

=>n+1 và 3n+4 là hai số nguyên tố cùng nhau

b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7

=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)

=>\(35n+50-35n-49⋮d\)

=>\(1⋮d\)

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4

=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)

=>\(42n+9-42n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau

Bình luận (1)