Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 4 − mx 2 + 1 có 3 điểm cực trị tạo thành một tam giác vuông cân.
A. m = 2
B. m = 3 3
C. m = 2 3
D. m = 1
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có đúng 3 đường tiệm cận.
A. -2<m<2
B. m > 2 m < - 2 h o ặ c m ≠ - 5 2
C. m>2 hoặc m<-2
D. m > 2 m ≠ 5 2 hoặc m<-2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 – m x + 1 có đúng 3 đường tiệm cận
A. -2 < m < 2
B. m > 2 m < - 2 m ≠ - 5 2
C. m < - 2 m > 2
D. m < - 2 m > 2 m ≠ 5 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng
⇔ P T m x − 8 = 0 không có nghiệm x = − 2.
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = m x − 8 x + 2 có tiệm cận đứng
A. m = 4
B. m = − 4
C. m ≠ 4
D. m ≠ − 4
Đáp án D
Hàm số có tiệm cận đứng ⇔ P T m x − 8 = 0 không có nghiệm x=-2
Suy ra − 2 m − 8 ≠ 0 ⇔ m ≠ − 4.
Cho hàm số y = f x = x 3 − 3 x 2 + m x + 1. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số f x có 3 điểm cực trị.
A. m=-1
B. m=2
C. m=0
D. m=1
Đáp án C
TXĐ: D = ℝ .
Ta có y ' = 3 x 2 − 6 x + m .
Để hàm số f x có ba điểm cực trị thì y ' = 0 có hai nghiệm phân biệt, trong đó có một nghiệm bằng 0.
Vậy m=0 thỏa mãn đề bài.
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có hai đường tiệm cận đứng
A. m ∈ ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ ) \ 5 2
B. m ∈ ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )
C. m ∈ ( - ∞ ; - 2 ) ∪ ( 2 ; + ∞ )
D. m ≢ 5 2