Tìm số n sao cho n3-n2-7n+1 là số nguyên tố lớn nhất.
Tìm n ∈ N * sao cho : n3 – n2 + n – 1 là số nguyên tố
Ta có :
Nếu n = 1 suy ra A = 0
Nếu n = 2 suy ra A = 5 là số nguyên tố
Nếu n>2 thì A là tích của hai thừa số mà mỗi thừa số đều lớn hơn hai . Vậy A là hợp số
Vậy để A = n3 – n2 + n – 1 là số nguyên tố thì n = 2.
Tìm số tự nhiên n sao cho n^3-n^2-7n+1 là số nguyên tố lớn nhất
Tìm Tìm số tự nhiên n để :
A=n3-n2+n-1 là số nguyên tố.
Tìm số tự nhiên n để p là số nguyên tố biết : n3-n2+n-1
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Bài 1: Tìm n thuộc N* sao cho n3 - n2 + n - 1 là số tự nhiên
Bài 2: C/m nếu 2n - 1 (n > 2) là số nguyên tố thì 2n + 1 là hợp số
Bài 3: Cho m và m2 + 2 là số nguyên tố. C/m m3 + 2 cùng là số nguyên tố
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
3 ,
Giải:
Với m=2 thì m2+2=4+2= 6 là hợp số (loại)
Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)
Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)
Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)
Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.
Tìm số tự nhiên n lớn nhất để n^3-n^2-7n+1 là số nguyên tố
Tìm số tự nhiên n lớn nhất để n^3-n^2-7n-1 là số nguyên tố
Tìm số tự nhiên n để n^3-n^2-7n+1 là số nguyên tố lớn nhất.
\(U\left(n\right)=n^3-n^2-7n+1\)
U(0)=1;U(2)==-9;U(3)=-1;U(4)=21
Đặt n=(p+4) {xét luôn dương đỡ loạn)
\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương
\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)
\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)
với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)
với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố
với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố
với p=3k+1=>p(p+1)^2 chia 3 dư 1
xét tiếp:
với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại
=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại
"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:
Tạm chấp nhận p=3; n=7 (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)
Xem lại bài giải nhé ngonhuminh. 89 có là giá trị làm cho n tự nhiên không nhé. Cho ngonhuminh 1 đáp án lớn hơn nè. Với n = 6 thì số cần tìm là 139
tìm n thuộc N để n3+n2-n+2 là số nguyên tố