cho 2 phân số a/b=c/d. CMR:
a.a/a+b=c/c+d
b.a/a-b=c/c-d
1) Biết a/b=b/c=c/a ,a=b=c khác 0, a=2016. Tính b,c
2) Biết (a+b)/(a-b) = (c+a)/(c-a) (a khác b, a khác 0). CMR:a.a=b.c
Cho phân số a / b và c / d có a / b - c / d = 1 / 15 và a / b : c / d = 6 / 5 . Tìm 2 phân số a / b và c / d .
Từ điểm K ở bên ngoài đường tròn (O), kẻ các tiếp tuyến KB, KD với đường tròn (B,D là các tiếp
điểm). Đường thẳng d đi qua K cắt đường tròn (O) tại hai điểm phân biệt A và C (O không thuộc (d),
A nằm giữa Kvà C). Gọi I là trung điểm của DB.
a) Chứng minh Tứ giác KBOD nội tiếp.
b) Chứng minh KA.KC = KI.KO
c) Kẻ dây CN // dây DB (N khác C). Chứng minh 3 điểm A,I,N thẳng hàng
a: Xét tứ giác KBOD có
\(\widehat{OBK}+\widehat{ODK}=180^0\)
=>KBOD là tứ giác nội tiếp
b: Xét (O) có
KB,KD là tiếp tuyến
=>KB=KD
mà OB=OD
nên OK là trung trực của BD
=>OK cắt BD tại trung điểm của BD
=>O,I,K thẳng hàng và OK\(\perp\)BD tại I
Xét ΔKBA và ΔKCB có
\(\widehat{KBA}=\widehat{KCB}\)
\(\widehat{BKA}\) chung
Do đó: ΔKBA đồng dạng với ΔKCB
=>KB/KC=KA/KB
=>\(KB^2=KA\cdot KC\)(1)
Xét ΔKBO vuông tại B có BI là đường cao
nên \(KI\cdot KO=KB^2\left(2\right)\)
Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)
cho phân số a/b (b khác 0 ) . tìm phân số c/d ( c,d khác 0 ) sao cho : a/b :c/d = a/b . c/d
\(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a}{b}.\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a}{b}:\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\)
\(\Rightarrow1=\left(\frac{c}{d}\right)^2\Rightarrow\frac{c}{d}=1\text{ hoặc }\frac{c}{d}=-1\)
cho phân số a/b (b khác 0 ) . tìm phân số c/d ( c,d khác 0 ) sao cho : a/b :c/d = a/b . c/d
ta có: \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a}{b}.\frac{d}{c}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a.d}{b.c}=\frac{a.c}{bd}\Leftrightarrow\frac{d}{c}=\frac{c}{d}\Leftrightarrow d^2=c^2\)
suy ra d=c hoặc d=-c
suy ra \(\frac{c}{d}=\frac{c}{c}=1\) hoặc \(\frac{c}{d}=\frac{c}{-c}=-1\)
cho 2 phân số : a/b và c/d. Chứng minh rằng :
-(a/b. C/d) = (-a/b). C/d = a/b. (-c/d)
cho phân số a/b (b khác 0 ) . tìm phân số c/d ( c,d khác 0 ) sao cho : a/b :c/d = a/b . c/d
Cho các số nguyên dương a , b , c , d phân biệt thỏa mãn a/a + b + b/b + c + c/c + d + d / + a là số nguyên. Chứng minh rằng a/a+b + b/b+c + c/c+d + d /d+a = 2
Ta có \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)
> \(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)(1)
Tương tự ta chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{a+d}>1\)(2)
mà \(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{b}{b+c}+\frac{d}{c+d}+\frac{c}{c+d}+\frac{a}{a+d}+\frac{d}{a+d}=4\)(3)
Từ (1) (2) (3) => \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\left(a;b;c;d\inℕ\right)\)
Cho 2 phân số a/b và c/d thỏa mãn a/b = c/d chứng minh rằng : a/b = c/d = (a+c)/(b+d) = (a-c)/(b-d)
b) (a+b)/b = (c+d)/d và a/(b-a) = c/(d-c)
Gạnh chéo / là trên nha . Đúng tick !!!