Những câu hỏi liên quan
QL
Xem chi tiết
HM
18 tháng 9 2023 lúc 19:55

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat {MPK} = \widehat {NPK}\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)

=> Tam giác MNP cân tại P.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2018 lúc 8:34

Bình luận (0)
LH
Xem chi tiết
LT
9 tháng 4 2017 lúc 20:35

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

Bình luận (0)
VL
9 tháng 4 2017 lúc 20:43

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 5 2022 lúc 18:14

a: NP=10cm

C=MN+MP+NP=24(cm)

b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có

NK chung

\(\widehat{MNK}=\widehat{ENK}\)

Do đó: ΔMNK=ΔENK

c: Ta có: MK=EK

mà EK<KP

nên MK<KP

Bình luận (2)
TL
Xem chi tiết
LL
Xem chi tiết
PN
Xem chi tiết
47
Xem chi tiết
TT
18 tháng 1 2022 lúc 15:59

Xét tam giác AMB và tam giác CMK:

+ AM = MC (M là trung điểm của AC).

+ BM = KM (gt).

\(\widehat{AMB}=\widehat{CMK}\) (đối đỉnh).

\(\Rightarrow\) Tam giác AMB = Tam giác CMK (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{KCM}\) (Tam giác AMB = Tam giác CMK).

\(\Rightarrow\) AB // CK (dhnb).

Bình luận (0)
DL
Xem chi tiết
NT
30 tháng 4 2022 lúc 20:11

a: Xét ΔMNP có \(NP^2=MP^2+MN^2\)

nên ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

\(\widehat{MND}=\widehat{END}\)

DO đó: ΔNMD=ΔNED

Suy ra: DM=DE

Bình luận (0)