Những câu hỏi liên quan
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 4 2019 lúc 17:20

f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 12 2017 lúc 9:21

Đáp án B

Bình luận (0)
NL
Xem chi tiết
NL
13 tháng 1 2021 lúc 11:46

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 5 2019 lúc 10:15

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 8 2017 lúc 11:43

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên ( π /2; 5 π /6] nên hàm số đạt cực tiểu tại x =  π /2 và f CT  = f( π /2) = 1

Mặt khác, f( π /3) = 2 3 , f(5 π /6) = 2

Vậy min f(x) = 1; max f(x) = 2

Bình luận (0)
TT
Xem chi tiết
AH
25 tháng 10 2021 lúc 22:30

Đáp án D.

Bình luận (2)
TN
16 tháng 1 2022 lúc 18:57

????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
12 tháng 8 2019 lúc 6:23

Đáp án là  A.

Ta có:  y , = 1 + 2 sin x   cos x   = 1   +   sin 2 x

y , = 0 ⇔ x = - π 4 + k π , k ∈ ℤ

Vì x ∈ 0 ; π  nên  x = 3 π 4

Tính được:  y ( 0 ) = 0 ; y ( π ) = π ;  y ( 3 π 4 ) = 3 π 4 + 1 2

        Vậy: m a x [ 0 ; π ]   y = y ( π ) = π .

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 10 2017 lúc 13:39

Đáp án là D 

h 1 2 = 1 25    k h i    x = π 4 + k π 2

Bình luận (0)