Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 8 2019 lúc 8:11

Với a = -7 và b = 4. Ta có:

a2+2.a.b + b2 = (-7)2+ 2.(-7).4 + 42 = 49 – 56 + 16 = 9

(a + b). (a + b) = [(-7) + 4].[(-7) + 4] = (-3).(-3) = 9

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 5:53

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1

Bình luận (0)
MM
27 tháng 7 2021 lúc 15:30

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)

=(a2−ab+b2)+3ab(a+b)2=(a2−ab+b2)+3ab(a+b)2

=a2−ab+b2+3ab=a2−ab+b2+3ab

=a2+2ab+b2=a2+2ab+b2

=(a+b)2=1

Bình luận (1)
PB
Xem chi tiết
CT
23 tháng 2 2018 lúc 5:10

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 7 2018 lúc 7:12

Đáp án D

Bình luận (0)
TH
Xem chi tiết
NT
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Bình luận (0)
TN
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

Bình luận (0)
NB
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
DT
23 tháng 11 2023 lúc 22:06

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1
nhwos tick nha :D

Bình luận (0)
PM
24 tháng 11 2023 lúc 9:15

�=�3+�3+3��(�2+�2)+6�2�2(�+�)

Biến đổi:

�2+�2=�2+2��+�2−2��=(�+�)2−2��

�3+�3=(�+�)(�2−��+�2)

Thay �+�=1 và phần biến đổi vào biểu thức, ta được:

Bình luận (0)
KV
Xem chi tiết
TT
7 tháng 11 2023 lúc 21:17

M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2

M=a2-ab+b2+3ab

M=(a+b)2=1

Bình luận (0)
SC
Xem chi tiết
NT
13 tháng 6 2023 lúc 8:43

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 9 2018 lúc 5:44

Đáp án B

Bình luận (0)