Những câu hỏi liên quan
MN
Xem chi tiết
H24
23 tháng 11 2016 lúc 6:52

M=(x+y/2-5/2)^2+2.5y/4-4y-25/4-y^2/4+(y^2-4y+2012) (kiem tra phan nay len lam nhap rut gon luon)

M=(x+y/2-5/2)^2+3/4(y^2-10y+25)+(2012-25/4-3.25/4)

M=(x+y/2-5/2)^2+3/4.(y-5)^2+(.....)

GTNN=(.....)

tai: y=5

2x+5-5=0=> x=0

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 11 2018 lúc 8:10

Bình luận (0)
BT
Xem chi tiết
H24
16 tháng 9 2023 lúc 15:21

a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.

Bình luận (0)
PH
Xem chi tiết
Vi
Xem chi tiết
AH
29 tháng 12 2022 lúc 18:37

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

Bình luận (0)
VT
Xem chi tiết
VT
13 tháng 9 2021 lúc 18:06

mọi người trả lời giúp mình với mình cần gấp

Bình luận (0)
DV
Xem chi tiết
NM
13 tháng 11 2021 lúc 8:00

\(a,ĐK:x\ne-3;x\ne0;y\ne0\\ b,A=\dfrac{1}{x^2\left(x+3\right)+y^2\left(x+3\right)}=\dfrac{1}{\left(x^2+y^2\right)\left(x+3\right)}\\ x=y=0\Leftrightarrow A\in\varnothing\)

Bình luận (0)
ND
Xem chi tiết
TM
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

Bình luận (0)
GN

GTNN là giá trị nhỏ nhất

Bình luận (0)
NJ
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất

Bình luận (0)
NA
Xem chi tiết
DC
12 tháng 5 2018 lúc 19:21

a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)

\(P=x+3y\)

b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)

Đặt \(t=\sqrt{\dfrac{x}{y}}>0\)\(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)

\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)

Bình luận (0)