Giá trị nhỏ nhất của hàm số sau trên khoảng (0; π/2) là:
A. 1 B. 2 2
C. - 2 D. 2/ 2
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) trên khoảng (− ∞ ;+ ∞ );
b) trên khoảng
a) trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
b) trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y(π) = −1.
Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: f(x) = x – ln x + 3 trên khoảng (0; ∞ )
min f(x) = f(1) = 4. Không có giá trị lớn nhất.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: y = x 4 + x 2 trên khoảng (− ∞ ;+ ∞ )
trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: y = 1 cosx trên khoảng π 2 ; 3 π 2
trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y( π ) = −1
Tìm giá trị nhỏ nhất của hàm số y = x + x 4 trên khoảng ( 0 ; + ∞ )
A. m i n 0 ; + ∞ y = 2
B. m i n 0 ; + ∞ y = 4
C. m i n 0 ; + ∞ y = 0
D. m i n 0 ; + ∞ y = 3
Tìm giá trị nhỏ nhất của hàm số y = x 2 + 2 x trên khoảng ( 0 ; + ∞ )
A. không tồn tại
B. m i n y ( 0 ; + ∞ ) = 3
C. m i n y ( 0 ; + ∞ ) = 1
D. m i n y ( 0 ; + ∞ ) = - 1
Tìm giá trị nhỏ nhất m của hàm số y = x 3 + 3 x trên khoảng 0 ; + ∞
A. m = 4 3 4
B. m = 2 3
C. m = 4
D. m = 2
Giá trị nhỏ nhất của hàm số f ( x ) = x + 1 x trên khoảng 0 ; + ∞ là
A.1/2
B. 2
C. 2
D. 2 2
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng (0;+∞) bằng –3 thì giá trị của tham số m là:
A. m = 11 2
B. m = 19 3
C. m = 5
D. m = 7
Đáp án C.
Phương pháp: Sử dung BĐT Cauchy.
Cách giải: