Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng (0;+∞) bằng –3 thì giá trị của tham số m là:
A. m = 11 2
B. m = 19 3
C. m = 5
D. m = 7
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng 0 ; + ∞ bằng -3 thì giá trị của tham số m là:
A. m =7
B. m = 19 3 .
C. m = 11 2 .
D. m =5
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Cho hàm số y = m 3 x 3 - 2 x 2 + ( m + 3 ) x + m . Tìm giá trị nhỏ nhất của tham số m để hàm số đồng biến trên R.
A. m = -4
B. m = 0
C. m = -2
D. m = 1
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
Tìm tất cả các giá trị của m để đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A ( 0 ; 4 ) và C sao cho diện tích ∆ M B C bằng 4, với M(1;3)
A. m = 2 m = 3
B. m = - 2 m = 3
C. m = 3
D. m = - 3 m = - 2
Đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4) B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3) Tìm tất cả các giá trị của m thỏa mãn yêu cầu bài toán
A. m=2 hoặc m=3
B. m=-2 hoặc m=3
C. m=3
D. m=-2 hoặc m=-3
Cho hàm số y = x − m 2 x + 8 với m là tham số thực. Giả sử m 0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn 0 ; 3 bằng − 3. Giá trị m 0 thuộc khoảng nào trong các khoảng cho dưới đây?
A. 20 ; 25 .
B. 5 ; 6 .
C. 6 ; 9 .
D. 2 ; 5 .
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3