Cho x, y ∈ Q. Chứng tỏ rằng |x + y| ≤ |x| + |y|.
Cho x, y ∈ Q. Chứng tỏ rằng |x - y| ≥ |x| - |y|
Theo câu a ta có: |x - y| + |y| ≥ |x – y + y| = |x| ⇒ |x - y| ≥ |x| - |y|.
cho x,y thuộc Q. chứng tỏ rằng |x+y|< hoặc bằng|x|+|y|
Cho x,y thuộc Q. Chứng tỏ rằng:
a) / x+y / bé hơn hoặc bằng /x/ + /y/
b) / x-y / lớn hơn hoặc bằng /x/ - /y/
Cho x , y thuộc Q . Chứng tỏ rằng : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Với mọi \(x,y\in Q\) ta có:
\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)
\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)
Dấu '' = '' xảy ra khi \(xy\ge0.\)
Chúc bạn học tốt!
Cho x,y\(\in\)Z. Hãy chứng tỏ rằng: Nếu x > y thì x - y > 0
Cho x, y thuộc Q. Chứng tỏ rằng: \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
cho\(x;y\in Q\).Chứng tỏ rằng:|x+y|\(\le\)|x|+|y|
bình phương 2 vế rồi c/m tương đương nha bạn
với mọi x,y thuộc Q,ta luôn luôn có:
x<|x| và -x<|x|; y<|y| và -y<|y|
=>x+y<|x|+|y| và -x-y<|x|+|y|
=>x+y>-(|x|+|y|)
=>-(|x|+|y|)<x+y<|x|+|y|
=>|x+y|<|x|+|y| (đpcm)
dấu "=" xảy ra <=>xy>0
cho x,y \(\in\) N* x > 2; y > 2 chứng tỏ rằng x + y < x * y
Từ đề bài suy ra xy - x - y > 0
=> xy - x - y + 1 > 1
=> (x - 1)(y - 1) > 1 hiển nhiên vì x - 1 ; y - 1 > 1
=> đpcm
Cho x,y \(\in\) Z.Hãy chứng tỏ rằng
a) Nếu x - y > 0 thì x > y
b) x > y thi x - y > 0
a)Nếu \(x-y>0\). Cộng 2 vế với y
b)Ngược lại trừ 2 vế với -y
P/s:dạng này Super cơ bản lần sau bn tự nghĩ