2 mũ 2022 và 5 mũ 2022 là 2 số tự nhiên liên tiếp tính số chữ số của 2 số
2 mũ 2022 và 5 mũ 2022 là 2 số tự nhiên liên tiếp tính số chữ số của 2 số. giúp gấp
Cho A =2 mũ 0 + 2 mũ 1 +.....+2 mũ 2022
Cho B =2021
Chứng tỏ A và B là 2 số tự nhiên liên tiếp
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.
A = 2^0 + 2^1 + 2^3 +...+
2^2022.B= 2^2023 .Hãy chứng tỏ A và B là hai số tự nhiên liên tiếp.
^ là mũ
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
a) chỉ ra 2 số tự nhiên là bội của 6
b) tìm số đối của -4;0
c) thực hiện phép tính 3 mũ 2+10:2
câu 2
tính (15-[3 mũ 20 : 3 mũ 19+2022 mũ 0]):11
câu 3: tìm x bt: 2x-7=39
a, Bội (6) = {0; 6}
b, Số đối của: -4 = 4 ; 0 = 0
c, \(3^2+10:2=9+10:2=9+5=14\)
Câu 2:
\(\left(15-\left[3^{20}:3^{19}+2022^0\right]\right):11=\left(15-\left[3^{20-19}+1\right]\right):11=\left(15-\left[3^1+1\right]\right):11\)
\(=\left(15-4\right):11=11:11=1\)
Câu 3:
\(2x-7=39\)
\(2x=39+7\)
\(2x=46\)
\(x=46:2\)
\(x=23\)
bài 9 :
6 mũ 2 x 73 + 36 x 3 mũ 3
197 -[ 6 x ( 5 - 1) mũ 2 +2022 mũ 0 ] : 5
bài 10: tìm số tự nhiên biết x
21- 4 . x = 13
30 : ( x - 3 ) + 1 = 4 mũ 5 : 4 mũ 3
( x - 1 ) mũ 3 + 5 . 6 = 38
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
Viết tích 31,5 mũ 2 thành tổng của ba lũy thừa cơ số 5 với số mũ là ba số tự nhiên liên tiếp
31.5^2 = 1.5^2 + 5.5^2 + 25.5^2 = 5^2 + 5^3 + 5^4
Chúc bạn học tốt
:)
31,52 = 1,52 + 5,52 + 25,52 = 52 + 53 + 54
31,52 = 1,52 + 5,52 + 25,52
= 52 + 53 +54
^^ Học tốt !!
Cho A = 1 + 2^2 + 2^4 + 2^6 + ... + 2^2022 và B = 2^2023. Chứng minh 3A và 2B là hai số tự nhiên liên tiếp.
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
Mình cần gấp nha
Viết tích 31.5^2 thành tổng của ba lũy thừa cơ số 5 với số mũ là ba số tự nhiên liên tiếp
chứng minh rằng tổng lập phương các số tự nhiên liên tiếp từ 1 là một số chính phương : 1+3+5+...+ n mũ 3 =(1+2+...+ n) mũ 2
Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)
Lời giải :
+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng )
Suy ra (*) đúng với \(n=1\) (1)
+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\); \(\left(1+2\right)^2=3^2=9\)
\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)
+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).
Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :
\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)
\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)
Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)
\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)
\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)
Do đó \(1^3+2^3+....+\left(k+1\right)^3\)
\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)
\(=\left(1+2+3+....+k+k+1\right)^2\)
Vậy (*) đúng với \(n=k+1\) (3)
Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).