Cha A=ax^2+bx+c trong đó a,b,c thuộc Z, A chia hết 3 với mọi x thuộc Z
Chứng tỏ a,b,c chia hết 3
Cho A = ax^2 +bx+c trong đó a,b,c thuộc Z , A chia hết cho 3 với x thuộc Z . Chứng tỏ rằng a,b,c chia hết cho
+ x = 0 => c chia hết cho 3
+x= 1=> a +b chia hết cho 3 (2)
+ x = -1=> a-b chia hết cho 3 (3)
(2)(3) => a chia hết cho 3; b chia hế cho 3
cho đa thức bậc 3 A(x)=ax3 +bx2 +cx +d với a,b,c,d thuộc Z. biết A(x) chia hết 3 với mọi x thuộc Z.Chứng tỏ rằng các hệ số a,b,c,d đều chia hết cho 3
CMR: f(x) = ax2 + bx + c (a,b,c thuộc Z) chia hết cho 3 với mọi x thì a, b, c đều chia hết cho 3
\(f\left(0\right)=a.0^2+b.0+c=c\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
Vì f(x) chia hết cho 3 với mọi x nên c;a+b+c;a-b+c đều chia hết cho 3
=>(a+b+c)-(a-b+c)=2b chia hết cho 3 mà ƯCLN(2;3)=1 => b chia hết cho 3
a+b+c chia hết cho 3, trong đó có b chia hết cho 3, c chia hết cho 3 => a chia hết cho 3
Vậy ...............
bạn oie tìm ƯCLN lm j
Cho đa thúc A(X)=ax^3+bx^2+6x+d, với a,b,c,d thuộc Z.Biết A(x) chia hết cho 3 với mọi x.Chứng tỏ rằng các hệ số a,b,c,d chia hết cho 3
Cho (f)x=ax^2+bx+c chia hết cho 3 với mọi x thuộc Z
CMR a,b,c chia hết cho 3
cho đa thức p(x)=ax2+bx+c(a,b,c thuộc Z)luôn chia hết cho 3 với mọi x thuộc Z.Chưng minh a,b,c chia hết cho 3
giúp mik với!mik cần gấp
Ta có f(0)=a.0^2+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.2^2+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
k mik nha!
:D
Bạn nào fan U23 Việt Nam k mik đc ko
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Cho f(x)=ax^3+bx^2+cx+d với a;;b;c;d thuộc Z
Biết f(x) chia hết cho 3 với mọi giá trị x thuộc Z.
Chứng minh a;b;c;d chia hết cho 3