Những câu hỏi liên quan
NA
Xem chi tiết
TD
24 tháng 2 2021 lúc 16:13

A = 3 phần n trừ 3

Bình luận (0)
 Khách vãng lai đã xóa
TD
28 tháng 2 2021 lúc 8:40

A=3 phần n trừ 3 nhá em

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 11 2018 lúc 5:49

Chọn D

Bình luận (0)
DM
Xem chi tiết
TD
4 tháng 8 2019 lúc 15:33

n2 + n + 1 = ( m+ m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15

\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0                  ( 1 )

để phương trình ( 1 ) có nghiệm nguyên dương thì : 

\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương

Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+

Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)

do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2

\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2

Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2

+) m = 1 thì \(n^2+n+16=0\)   vô nghiệm

+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)

Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán

Vậy m = 2 và n = 4

P/s : bài " gắt "

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 5 2019 lúc 16:38

Chọn A

Bình luận (0)
NH
Xem chi tiết
SP
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
KS
10 tháng 8 2018 lúc 21:25

 2m+2n=2m+n.

 <=> 2^m = 2^(m + n) - 2^n 

<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

​chúc bạn hok tốt

Bình luận (0)
TB
10 tháng 8 2018 lúc 21:39

mình ko hiểu bài của bạn lắm

Bình luận (0)