Tính tổng của hai đa thức:
M = x2y + 0,5xy3 – 7,5x3y2 + x3 và N = 3xy3 – x2y + 5,5x3y2
Tính tổng của hai đa thức:
a) M = x2y + 0,5xy3 – 7,5x3y2 + x3 và N = 3xy3 – x2y + 5,5x3y2
b) P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2
a)\(M+N=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2=x^3+3,5xy^3-2x^3y^2\)b) \(P+Q=x^5+xy+0,3y^2-x^2y^3-2+x^2y^3+5-1,3y^2=x^5-y^2+xy+3\)
1. Tính tổng của hai đa thức trong mỗi trường hợp sau :
a, P= x2y + x3 - xy2 +3 và Q= x3 + xy2 - xy - 6
b, M= x2y + 0,5xy3 - 7,5 x3y2 + x3 và N= 3xy3 - x2y + 5,5x3y2
a/ \(P+Q=\left(x^2y+x^3-xy^2+3\right)+\left(x^3+xy^2-xy-6\right)\)
\(=x^2y+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=\left(x^3+x^3\right)+\left(xy^2-xy^2\right)+\left(3-6\right)+x^2y-xy\)
\(=2x^3+x^2y-xy-3\)
b/ \(M+N=\left(x^2y+0,5xy^3-7,5x^3y^2+x^3\right)+\)
\(\left(3xy^3-x^2y+5,5x^3y^2\right)\)
\(=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2\)
\(=\left(x^2y-x^2y\right)+\left(0,5xy^3+3xy^3\right)+\left(5,5x^3y^2-7,5x^3y^2\right)+x^3\)
\(=3,5xy^3-2x^3y^2+x^3\)
Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)
= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)
= x3 – 4x2y2 + 0 + 4xy2
= x3 – 4x2y2 + 4xy2
Tính tổng và hiệu của hai đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6
Ta có:
• P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= x2y + (x3 + x3) + (xy2 – xy2) – xy + (3 – 6)
= x2y + 2x3 – xy – 3.
• P – Q = (x2y + x3 – xy2 + 3) – (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 – x3 – xy2 + xy + 6
= x2y + (x3 – x3) – (xy2 + xy2) + xy + (6 + 3)
= x2y – 2xy2 + xy + 9.
Vậy P + Q = x2y + 2x3 – xy – 3; P – Q = x2y – 2xy2 + xy + 9.
\(\text{ P + Q = (x^2y + x^3 – xy^2 + 3) + (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 + x^3 + xy^2 – xy – 6}\)
\(\text{= x^2y + (x^3 + x^3) + (xy^2 – xy^2) – xy + (3 – 6)}\)
\(\text{= x^2y + 2x^3 – xy – 3}\)
__________________________________________________
\(\text{P – Q = (x^2y + x^3 – xy^2 + 3) – (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 – x^3 – xy^2 + xy + 6}\)
\(\text{= x^2y + (x^3 – x^3) – (xy^2 + xy^2) + xy + (6 + 3)}\)
\(\text{= x^2y – 2xy^2 + xy + 9}\)
Tính tổng của đa thức
P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6.
P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= (x3 + x3) + x2y + (xy2 – xy2) – xy + (3 – 6)
= 2x3 + x2y – xy – 3
Vậy P + Q = 2x3 + x2y – xy – 3.
Cho hai đa thức P = x 2 y + x y 2 - 5 x 2 y 2 + x 3 , Q = 3 x y 2 - x 2 y + x 2 y 2
Tổng P + Q là đa thức nào dưới đây?
A. - 4 x 2 y 2 - x 3 + 4 x y 2
B. - 4 x 2 y 2 + x 3 + 4 x y 2
C. 4 x 2 y 2 + x 3 + 4 x y 2
D. - 4 x 2 y 2 + x 3 - 4 x y 2
Ta có P + Q=x2 y + xy2 - 5x2 y2 + x3 + 3xy2 - x2 y + x2 y2
= -4x2 y2 + x3 + 4xy2
Chọn B
Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
Bài : Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.
Help me !
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Cho đa thức A=-3x3y2-x2y+3xy-1 và đa thức B=-x2y-3x3y2+3xy-3
Biết N=A-B. Bậc của đa thức M là:
`#3107.101107`
`N = A - B`
`N = -3x^3y^2 - x^2y + 3xy - 1 - (-x^2y - 3x^3y^2 + 3xy - 3)`
`= -3x^3y^2 - x^2y + 3xy - 1 + x^2y + 3x^3y^2 - 3xy + 3`
`= (-3x^3y^2 + 3x^3y^2) + (-x^2y + x^2y) + (3xy - 3xy) + (-1 + 3)`
`= 2`
Bậc của đa thức N (?) là `0.`