Những câu hỏi liên quan
PB
Xem chi tiết
CT
31 tháng 7 2019 lúc 13:06

Chọn D

Từ đó suy ra môđun của z nhỏ nhất bằng  1 2  

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 6 2019 lúc 7:02

Đap án B.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 3 2017 lúc 6:11

Đáp án B.

Bình luận (0)
DH
Xem chi tiết
SN
3 tháng 3 2016 lúc 19:55

Tajuu Kage Bushino Jutsu

Bình luận (0)
NM
3 tháng 3 2016 lúc 20:03

ban sat long nhan natsu oi giai nhu vay thi ai hieu ham

Bình luận (0)
NH
3 tháng 3 2016 lúc 20:08

bài 1

Từ tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+x}=\frac{x+y+z}{x+y+z}=1\)

=> x=y=z 

=> B = 2.2.2 = 8

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 12 2018 lúc 9:06

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 11 2018 lúc 12:52

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 10 2018 lúc 16:26

Đáp án A.

Đặt ,

khi đó và 

Nên ta có

Khi đó  

Dễ thấy

Bình luận (0)
BN
Xem chi tiết
HP
12 tháng 8 2016 lúc 10:52

a, Từ x+y=1

=>x=1-y

Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)


\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)

\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y

=>GTNN của x3+y3 là 1/4

Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)

Vậy .......................................

b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)

\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)

Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)

\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)

(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)

\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)

=>minP=1

Dấu "=" xảy ra <=>x=y=z

Vậy.....................

Bình luận (0)
MQ
Xem chi tiết
DK
18 tháng 12 2015 lúc 14:04

1.660

3.4

4.-1

5.0

6.100

câu 7 ko hiểu, mà nhớ tick nha

 

Bình luận (0)
GS
6 tháng 12 2016 lúc 21:16

CAU 1=660

CAU 3=4

CAU4=-1

CAU5=0 

CAU 6=100

Bình luận (0)