Những câu hỏi liên quan
MH
Xem chi tiết
NQ
9 tháng 1 2018 lúc 21:02

1, 54 : x - 1 = 5

54 : x = 5+1 = 6

x = 54 : 6 = 9

2, 42 : x + 0 = 8

x = 42 : 8 = 21/4

3, 24 : x - 8 = 0

24 : x = 0 + 8 = 8

x = 24 : 8 = 3

Tk mk nha

Bình luận (0)
NC
9 tháng 1 2018 lúc 21:03

1) 54:x-x:x=3x2-1

    54:x-  1 =6-1

    54:x-   1=5

    54:x      =6

         x=54:6=9

              

Bình luận (0)
YA
9 tháng 1 2018 lúc 21:07
A)=9 B)=5.25 C)=3
Bình luận (0)
PL
Xem chi tiết
MN
29 tháng 2 2020 lúc 11:02

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
MN
29 tháng 2 2020 lúc 12:53

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
PL
29 tháng 2 2020 lúc 14:27

cảm ơn bn nha

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
ND
24 tháng 7 2020 lúc 15:37

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
KK
24 tháng 7 2020 lúc 15:39

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 7 2020 lúc 20:21

a) (x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)].[(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)+1=t2-1+1=t2. mà t=x2+5x+5

=> (x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

b) (x+1)(x+2)(x+3)(x+4)-24. theo kết quả câu (a) ta được (x+1)(x+2)(x+3)(x+4)=(x2+5x+4)(x2+5x+6)

đặt t=x2+5x+5 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t-5)(t+5)

mà t=x2+5x+5 => (t-5)(t+5)=(x2+5x)(x2+5x+10)

c) (x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)].[(x+3)(x+5)]+15=(x2+8x+7)(x2+8x+15)+15

đặt x2+8x+11=t ta có đa thức (t-4)(t+4)+15=t2-16+15=t2-1=(t-1)(t+1)

mà t=x2+8x+11 => (t-1)(t+1)=(x2+8x-10)(x2+8x+12)

d) (x+2)(x+3)(x+4)(x+5)-24=[(x+2)(x+5)][(x+3)(x+4)]-24=(x2+7x+12)(x2+7x+10)-24

đặt t=x2+7x+11 ta có đa thức (t-1)(t+1)-24=t2-1-24=t2-25=(t+5)(t-5)

mà t=x2+7x+11 => (t-5)(t+5)=(x2+7x+6)(x2+7x+16)

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
NT
10 tháng 7 2022 lúc 9:46

1: 

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)

\(\Leftrightarrow x^2+5x=0\)

=>x=0 hoặc x=-5

3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

Bình luận (0)
DK
Xem chi tiết
H24
21 tháng 7 2016 lúc 13:16

d ) 

=(x2-3x)(x2-3x+2)-24

đặt x2-3x+1=a ta đc 

(a-1)(a+1)-24

=a2-1-24=a2-25

=(a-5)(a+5)

=(x2-3x+1+5)(x2-3x+1-5)

=(x2-3x+6)(x2-3x-4)

=(x2-3x+6)(x2-4x+x-4)

=(x2-3x+1)[x(x-4)+(x-4)]

=(x-4)(x+1)(x2-3x+1)

mấy câu kia làm tương tự nhé 

Bình luận (0)
KN
Xem chi tiết
TT
Xem chi tiết
TT
2 tháng 3 2022 lúc 9:36

\(a)x=\dfrac{1}{4}+\dfrac{5}{13}=\dfrac{33}{52}.\\ b)\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}.\\ \Leftrightarrow\dfrac{x}{3}=\dfrac{11}{21}.\\ \Leftrightarrow\dfrac{7x}{21}=\dfrac{11}{21}.\\ \Rightarrow7x=11.\\ \Leftrightarrow x=\dfrac{11}{7}.\\ c)\dfrac{x}{3}=\dfrac{16}{24}+\dfrac{24}{36}=\dfrac{2}{3}+\dfrac{2}{3}=\dfrac{4}{3}.\\ \Rightarrow x=4.\\ d)\dfrac{x}{15}=\dfrac{1}{5}+\dfrac{2}{3}=\dfrac{13}{15}.\\ \Rightarrow x=13.\)

Bình luận (0)
BA
Xem chi tiết
NN
10 tháng 5 2023 lúc 18:42

\(\dfrac{3}{7}\times\dfrac{7}{9}\times\dfrac{1}{2}\)

\(=\dfrac{3\times7\times1}{7\times9\times2}\)

\(=\dfrac{21}{126}\)

\(=\dfrac{1}{6}\)

\(\dfrac{5}{8}\times4\times\dfrac{1}{2}\\ =\dfrac{5}{8}\times\dfrac{4}{1}\times\dfrac{1}{2}\\ =\dfrac{5\times4\times1}{8\times1\times2}\\ =\dfrac{20}{16}\\ =\dfrac{5}{4}\)

\(4\times\dfrac{1}{24}\times3\\ =\dfrac{4}{1}\times\dfrac{1}{24}\times\dfrac{3}{1}\\ =\dfrac{4\times1\times3}{1\times24\times1}\\ =\dfrac{12}{24}\\ =\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 5 2016 lúc 21:04

Ủa,câu hỏi gì kỳ lạ thế? Có trả lời lun ak?

Bình luận (0)
H24
4 tháng 5 2016 lúc 21:21

giải giúp bạn kia mà ko đăng được nên gửi lên đây rồi gửi link

Bình luận (0)
PC
Xem chi tiết
H24
7 tháng 8 2017 lúc 21:34

\(\dfrac{24}{x}:\dfrac{8}{3}=\dfrac{3}{5}\)

\(\dfrac{24}{x}=\dfrac{3}{5}.\dfrac{8}{3}\)

\(\dfrac{24}{x}=\dfrac{8}{5}\)

\(\dfrac{24}{x}=\dfrac{24}{15}\)

=>x=5

Vậy x=5

Bình luận (0)
H24
7 tháng 8 2017 lúc 21:41

\(x+3\dfrac{1}{2}+x=24\dfrac{1}{4}\)

\(\left(x+x\right)+3\dfrac{1}{2}=24\dfrac{1}{4}\)

\(x.2+\dfrac{7}{2}=\dfrac{97}{4}\)

\(x.2=\dfrac{97}{4}-\dfrac{7}{2}\)

\(x.2=\dfrac{97}{4}-\dfrac{14}{4}\)

\(x.2=\dfrac{83}{4}\)

\(x=\dfrac{83}{4}:2\)

\(x=\dfrac{83}{4}.\dfrac{1}{2}\)

\(x=\dfrac{83}{8}\)

\(x=10\dfrac{3}{8}\)

Bình luận (0)