Những câu hỏi liên quan
SK
Xem chi tiết
ND
11 tháng 5 2017 lúc 11:07

a) Cần biết ít nhật ba trong năm đại lượng u1, n, d, un, Sn thì có thể tính được hai đại lượng còn lại.

b) Thực chất đây là năm bài tập nhỏ, mỗi bài ứng với các dữ liệu ở một dòng. Học sinh phải giải từng bài nhỏ rồi mới điền kết quả.

b1) Biết u1 = -2, un = 55, n = 20. Tìm d, Sn

Áp dụng công thức d = , Sn =

Đáp số: d = 3, S20 = 530.

b2) Biết d = -4, n = 15, Sn = 120. Tìm u1, un

Áp dụng công thức un = u1 + (n - 1)d và Sn = ,

ta có:

Giải hệ trên, ta được u1 = 36, u15 = - 20.

Tuy nhiên, nếu sử dụng công thức

thì S15 = 120 = 15u1 + .

Từ đó ta có u1 = 36 và tìm được u15 = - 20.

b3) Áp dụng công thức un = u1 + (n - 1)d, từ đây ta tìm được n; tiếp theo áp dụng công thức . Đáp số: n = 28, Sn = 140.

b4) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: u1 = -5, d= 2.

b5) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: n = 10, un = -43

Bình luận (0)
ML
Xem chi tiết
H9
17 tháng 8 2023 lúc 7:41

Quả cầu dao động qua lại quanh một vị trí cân bằng xác định với biên độ nhỏ là A, sau những khoảng thời gian bằng nhau, vật trở lại vị trí cũ theo hướng cũ.

Bình luận (0)
ML
Xem chi tiết
TL
19 tháng 8 2023 lúc 7:03

Trong hai cách giải trên thì cách giải thứ 2 tốt hơn. Vì thời gian thực hiện thuật toán sẽ nhanh hơn cách thứ nhất, chỉ cần 3 phép toán để tính tổng S, T(n) =3.

Bình luận (0)
B1
Xem chi tiết
B1
18 tháng 8 2017 lúc 8:44

Còn về Pythagoras Triples, có những bộ số nguyên dương được gọi là bộ ba Pythagoras sẽ luôn đúng khi áp dụng vào công thức của Pythagoras như : 3^2 4^2 = 5^2; 8^2 15^2 = 17^2. Chúng được gọi là Bộ Ba Số Nguyên Dương Pythagoras.

Và bạn hãy tưởng tượng rằng mọi số nguyên dương trong bảng chữ số sẽ được tô màu hoặc đỏ hoặc xanh. Graham đã đưa ra bài toán rằng: liệu có khả thi không khi thực hiện việc tô màu mọi số nguyên hoặc xanh hoặc đỏ, để cho không có Bộ Ba Pythagoras nào có cùng màu. Và 100 USD sẽ được thưởng cho bất cứ người nào giải được bài toán ấy (Chà, với 100 USD thì ta có thể chi trả cho tận 1 cái ổ có dung lượng 1 terabyte).

Vấn đề toán học này khó ở chỗ: một số nguyên dương có thể nằm trong nhiều Bộ Ba Pythagoras khác nhau. Ví dụ như số 5, ta có dãy 3-4-5 là Bộ Ba Pythagoras, nhưng dãy 5-12-13 cũng vậy. Áp dụng điều kiện của Graham, nếu số 5 của dãy đầu tiên tô màu xanh, thì trong dãy thứ hai nó cũng phải là màu xanh, vì thế số 12 và 13 phải mang màu đỏ.

Càng tiến xa hơn với điều kiện mà Graham đề ra, các con số càng lớn và vấn đề bắt đầu nảy sinh. Nếu như số 12 phải mang màu đỏ trong dãy 5-12-13, những dãy số sau này chứa số 12 sẽ bắt buộc mang một màu nhất định.

Các nhà toán học Marijn Heule từ Đại học Texas, Victor Marek từ Đại học Kentucky, và Oliver Kullmann từ Đại học Swansea tại Anh đã cùng nhau giải quyết vấn đề này. Họ đã cài đặt một số phép thử và kĩ thuật tính toán vào trong siêu máy tính Stampede tại Đại học Texas, để cho nó có thể thu hẹp phạm vi “tô màu” xuống còn 102,300 tỷ tỷ khả năng (trăm nghìn tỷ tỷ, từng đó là có tổng cộng 25 số “0” đó các bạn).

Bộ siêu máy tính gồm 800 vi xử lý mạnh mẽ đã phải mất tới 2 ngày để “nhằn” hết đống phép thử kia, và nó chỉ có thể khả thi cho tới số 7.824. Bắt đầu từ 7.825 trở đi là không thể thỏa mãn điều kiện đặt ra của Graham.

Vậy là 3 nhà toán học (kèm một cái siêu máy tính) đã giải quyết được vấn đề toán học đã tồn tại cả thập kỉ này, và cụ Ronald Graham cũng đã giữ lời hứa của mình, thưởng “hậu hĩnh” món tiền 100 USD cho 3 anh.

“Bộ ba nguyên tử” của 3 nhà toán học này đã tạo ra một bản nén 68 gigabyte cho bất kì bạn trẻ nào có một bộ vi xử lý tốt cùng với 30.000 giờ rảnh rỗi để tải về, tái dựng và xác minh vấn đề. Nhưng nếu bạn có 30.000 giờ rảnh thật thì cũng còn một vấn đề khác nữa, con người không thể đọc được những dòng thuật toán đó.

Thực tế, bộ ba đã phải “nhờ” một chương trình máy tính khác để xác minh lại kết quả của họ, và cuối cùng thì 7.824 là con số chính xác. Ronald Graham cũng hài lòng với việc xác minh được con số này.

Nhưng nhiều người cho rằng, con người không đọc nổi kết quả nên nó không đủ thuyết phục. Dù không chứng minh được là nó sai, nhưng việc đó cũng không giải quyết vấn đề đến tận cùng. Tại sao bắt đầu từ số 7.825 trở đi thì việc “tô màu” là bất khả thi? Chúng ta không giải thích được, mà chỉ được dàn siêu máy tính kia cho biết vậy thôi.

Làm sau mà con người có thể hiểu được ý nghĩa của các con số với chúng ta cũng như với cả Vũ trụ nếu như mọi vấn đề toán học được giải quyết bằng máy như vậy. Sự thực là vấn đề này quá khó giải quyết, có lẽ cũng lại phải nhờ một bộ siêu máy tính nào đó vào cuộc thôi.

Bình luận (0)
NC
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
LN
25 tháng 10 2016 lúc 19:29

(9,99+9,5+9,7+9,6):4 \(\simeq\) 10m

Bình luận (0)
NA
Xem chi tiết
NV
17 tháng 10 2016 lúc 15:14

Bài này thuộc dạng bài thực hành, làm sao bọn mình biết lớp bạn như thế nào mà làm được!

Mình ví dụ nhé!

* Bước 1: Đo 5 lần chiều dài lớp học và ghi kết quả lại

Lần 1: 8 mét

Lần 2: 8,2 mét

Lần 3: 8,1 mét

Lần 4: 8,3 mét

Lần 5: 8,5 mét

* Bước 2: Tính trung bình cộng của chiều dài lớp học các lần đo được

            (8 + 8,2 + 8,1 + 8,3 + 8,5) : 5 = 8,22 (mét)

Kết luận: Chiều dài lớp học sát số đúng nhất là 8,22 mét

Bình luận (0)
DV
19 tháng 10 2016 lúc 9:28

ừm ừm !! vân nói đúng á ! bài thực hành này khó mà thấy lớp nào giống nhau á bạn^^

Bình luận (0)
BM
Xem chi tiết
ML
1 tháng 4 2022 lúc 11:22

Input: dãy A và N phần tử

Output: Là cấp số cộng hoặc không là cấp số cộng

Thuật toán:

- Bước 1: Nhập N và dãy A1,A2,...,An

- Bước 2: d←A2-A1; i←2;

-Bước 3: Nếu i>N thì in ra kết quả là cấp số cộng rồi kết thúc

- Bước 4: Nếu Ai+1-Ai khác d thì chuyền xuống bước 6

- Bước 5: i←i+1, quay lại bước 3

- Bước 6: Thông báo không phải là cấp số cộng rồi kết thúc

Bình luận (0)