Tìm x:
a) x + 1 = 10
b) 12 + x = 22
c) 40 + x = 48
2, Tìm x:
a) 45 + x = 79 + 2x
b) 15 - (x + 7) = (x - 8) +22
c) |x| = 5
d) x - ƯCLN(16; 24) = 7
Bài 2:
a: Ta có: \(2x+79=x+45\)
nên 2x-x=45-79
hay x=-24
b: Ta có: \(15-\left(x+7\right)=\left(x-8\right)+22\)
\(\Leftrightarrow8-x-x-14=0\)
\(\Leftrightarrow2x=22\)
hay x=11
Bài 23: Tìm x:
a) 29 < x < 32
b) 36 < x + 1 < 39
c) x + 30 < 64
d) 46 < x - 42 < 48
Bài 23: Tìm x:
a) 29 < 30 < 32
b) 36 < 37 + 1 < 39
c) 30 + 30 < 64
d) 46 < 88 - 42 < 48
Tìm x:
a) x(2-x)+(x2+x)=7
b) (4-x)2-(2x+1)2=0
c) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Tìm x:
a)x^3+1=0
b)6x^2-12x-48=0
a: Ta có: \(x^3+1=0\)
\(\Leftrightarrow x^3=-1\)
hay x=-1
b: Ta có: \(6x^2-12x-48=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
1 . Tìm x:
a) x.2 / -15 = -5/3
b) x-1 / -12 = -3 / x - 1
a) \(\dfrac{x.2}{-15}=\dfrac{-5}{3}\)
\(\dfrac{x.2}{-15}=\dfrac{25}{-15}\)
x.2=25
x=12,5
b) \(\dfrac{x-1}{-12}=\dfrac{-3}{x-1}\)
(x-1)2=-3.(-12)
(x-1)2=36
⇒(x-1)2\(\Rightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
Tìm x:
a) x(2-x)+(x2+x)=7
b) (2x+1)2-x(4-5x)=17
c) (4-x)2-(2x+1)2=0
d) (2x3-8x2+10x) : (2x)=0
e) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)
\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)
\(\Leftrightarrow9x^2=16\)
\(\Leftrightarrow x^2=\dfrac{16}{9}\)
hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)
c: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
d: ta có: \(\dfrac{2x^3-8x^2+10x}{2x}=0\)
\(\Leftrightarrow x^2-4x+5=0\)
\(\Leftrightarrow\left(x-2\right)^2+1=0\)(vô lý)
Tìm x:
a) 3/4 x X = 5/8
....................
....................
....................
....................
b) 5/6 - X = 1/ 12
......................
......................
......................
......................
a) x = 5/8 : 3/4
x = 5/6
b) x = 5/6 - 1/12
x = 3/4
a)x=\(\dfrac{5}{8}:\dfrac{3}{4}=\dfrac{5}{6}\)
b) x=\(\dfrac{5}{6}-\dfrac{1}{12}=\dfrac{3}{4}\)
a \(x=\dfrac{5}{8}:\dfrac{3}{4}\)
\(x=\dfrac{5}{8}\times\dfrac{4}{3}\)
\(x=\dfrac{5}{6}\)
b \(x=\dfrac{5}{6}-\dfrac{1}{12}\)
\(x=\dfrac{10}{12}-\dfrac{1}{12}\)
\(x=\dfrac{9}{12}\)
\(x=\dfrac{3}{4}\)
Tìm x:
a, \(\left(12-12\dfrac{1}{3}\right):x+\dfrac{1}{6}=\dfrac{-2}{3}\)
b, \(\dfrac{4}{x}=\dfrac{x}{16}\)
a) \(\left(12-12\dfrac{1}{3}\right):x+\dfrac{1}{6}=-\dfrac{2}{3}\)
\(-\dfrac{1}{3}x=-\dfrac{2}{3}-\dfrac{1}{6}\)
\(-\dfrac{1}{3}x=-\dfrac{5}{6}\)
\(x=-\dfrac{5}{6}:\left(-\dfrac{1}{3}\right)\)
\(x=\dfrac{5}{2}\)
b) \(\dfrac{4}{x}=\dfrac{x}{16}\)
\(x^2=4.16\)
\(x^2=64\)
\(\Rightarrow x=8;x=-8\)
`a)=>(12-37/3):x+1/6=-2/3`
`=>(12-37/3):x=-5/6`
`=>(-1/3):x=-5/6`
`=>x=(-1/3):(-5/6)`
`=>x=6/15=2/5`
`b)4/x=x/16`
`=>x^2=4*16`
`=>x^2=64`
`=>x^2=(+-8)^2`
Tìm x:
a, x^2-2x+2|x-1|-7=0
b, (x^2+3x+2)(x^2+7x+12)=24
gấp ạ!!!!!!!
a. \(x^2-2x+2\left|x-1\right|-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2x+2\left(x-1\right)-7=0\\x^2-2x-2\left(x-1\right)-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\\x^2-4x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\\left(x-5\right)\left(x+1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm3\\x=5\\x=-1\end{matrix}\right.\)
b: Ta có: \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\cdot\left(x^2+5x\right)=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)