Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
PA
4 tháng 7 2023 lúc 21:56

Bình luận (0)
H24
Xem chi tiết
NM
Xem chi tiết
H24
5 tháng 8 2021 lúc 14:55

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

Bình luận (0)
PC
5 tháng 8 2021 lúc 15:18

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

Bình luận (0)
HT
Xem chi tiết
DY
Xem chi tiết
NL
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 6 2017 lúc 11:11

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3

Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng

|x – 1| = 0 ó x – 1 = 0  ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.

Vậy có 1 khẳng định đúng

Đáp án cần chọn là: B

Bình luận (0)
TP
Xem chi tiết
NK
20 tháng 5 2019 lúc 15:57

khó quá

Bình luận (0)
PQ
20 tháng 5 2019 lúc 18:59

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

Bình luận (0)
PQ
21 tháng 5 2019 lúc 9:56

nhầm r >_< sửa lại chỗ này nhé 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))

Bình luận (0)
HB
Xem chi tiết