Những câu hỏi liên quan
NA
Xem chi tiết
TA
9 tháng 3 2022 lúc 18:46

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1/1 - 1/100

= 99/100

Học từ lớp 4 rồi :V

Bình luận (0)
DP
Xem chi tiết
KZ
20 tháng 4 2016 lúc 18:36

= 1 -1/2 + 1/2 - 1/3 +......+1/99 - 1/100

= 1 -1/100

= 99/100

***Ai k mk mk k lại !!***

Bình luận (0)
TN
20 tháng 4 2016 lúc 18:36

1/1*2+1/2*3+1/3*4+...+1/99*100

=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)

=1-1/100

=99/100

Bình luận (0)
H24
Xem chi tiết
LV
3 tháng 5 2016 lúc 21:10

Khônh hiểu

Bình luận (0)
VH
3 tháng 5 2016 lúc 21:12

437/60

Bình luận (0)
H24
3 tháng 5 2016 lúc 21:12
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6 =1/2-1/6 =5/6
Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết
MN
9 tháng 5 2022 lúc 15:14

999/1000(hình như v)

Bình luận (0)
NV
9 tháng 5 2022 lúc 15:16

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

Bình luận (0)
GB
9 tháng 5 2022 lúc 15:17

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(A=1-\dfrac{1}{1000}\)

\(A=\dfrac{999}{1000}\)

Bình luận (0)
PX
Xem chi tiết
H24
5 tháng 11 2015 lúc 20:09

S=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

Bình luận (0)
TH
Xem chi tiết
KM
13 tháng 5 2015 lúc 12:22

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2005.2006

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2005 - 1/2006

= 1/1 - 1/2006

= 2005/2006

cho mình 1 đ-ú-n-g nha bạn

Bình luận (0)
HM
5 tháng 6 2018 lúc 20:07

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\)\(\frac{1}{2005\cdot2006}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=\frac{1}{1}-\frac{1}{2006}\)

\(=\frac{2006}{2006}-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 8 2016 lúc 16:52

1/1.2+1/2.3+1/3.4+...+1/2005.2006=(1-1/2)+(1/2-1/3)+...+(1/2005-1/2006)=1-1/2+1/2-1/3+...+1/2005-1/2006

=1-(1/2-1/2)+...-1/(1/2005-1/2005)-1/2006=1-1/2006=2005/2006

k mình nha

Bình luận (0)
H24
18 tháng 8 2016 lúc 21:57

CẢM ƠN BẠN NHIỀU

Bình luận (0)
NV
Xem chi tiết
LA
23 tháng 4 2023 lúc 9:28

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)

Bình luận (0)
TH
Xem chi tiết
MT
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bình luận (0)