Tam giác ABC có A B = 3, A C = 6, B A C ^ = 60 ° . Tính độ dài đường cao h a của tam giác.
A. h a = 3 3
B. h a = 3
C. h a = 3
D. h a = 3 2
Câu 1 cho tam giác abc biết a=6, b=4, c=8 độ dài đường cao từ đỉnh A là 3? Diện tích tam giác là?
Câu 2 cho tam giác biết a=4, b=5, góc C= 60. Diện tích tam giác là ?
Câu 3 cho tam giác abc có a2+b2-c2 >0. Khi đó góc C là ?
E mong các ac giúp e bài toán trên nha. E cảm ơn rất nhiều ^^
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
Câu 1:
1) Cho tam giác ABC có góc A = góc C-10độ; góc B=góc C + 10độ. Tính các góc của tam giác ABC?
2) Cho tam giác ABC có góc B= 7/6 góc C; góc A= 5/6 góc C. Tính các góc của tam giác ABC?
3) cho tam giác ABC có góc A= 2. Góc B ; góc B = góc C . tính các góc của tam giác ABC?
4) Cho tam giác ABC có góc A= 5.góc C; góc B= 2.góc C. tínhcác góc của tam giác ABC?
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC có b = 6 và c = 8; góc A bằng 60 độ. Độ dài cạnh a là:
A. 10
B. 2 13
C. 2 37
D. 20
Chọn B.
Áp dụng định lí cosin cho tam giác ta có:
a2 = b2 + c2 - 2bc.cosA = 36 + 64 - 2.6.8.cos600 = 52
do đó .
Bài 1 : 1. tam giác ABC có góc A = 100 độ và góc B - C = 50 độ , tính góc B , C
2. Tam giác ABC có góc b = 80 độ và 3 lần góc A = 2 lần góc c , tính góc A , C
Bài 2 : tam giác ABC góc A = góc B = 60 độ , gọi Cx là tia phân giác góc ngoài ở đỉnh C . CMR Cx // AB
Bài 1:
1. Ta có ^B+^C=1800-1000=800. => ^C=[(^B+^C)-(^B-^C)]/2 =(800-500)/2=150 => ^B=150+500=650.
2. ^A+^C=1800-^B=1800-800=1000
3^A=2^C => ^A/2=^C/3 = (^A+^C)/2+3 (Dãy tỉ số bằng nhau)
=(^A+^C)/5=1000/5=200 => ^A=200.2=400; ^C=200.3=600.
Bài 2:
Gọi góc ngoài đỉnh C của tam giác ABC là ^ACy => ^Cx là phân giác ^ACy
=> ^ACx=^xCy=^ACy/2=1200/2=600
^A=600 => ^ACy=^A=600. Mà 2 góc này so le trong => Cx//AB.
Cho tam giác ABC có AB = AC. Tam giác ABC không là tam giác đều nếu thỏa mãn điều kiện:
A. B ^ = 60 ° .
B. AB = BC.
C. AB < BC.
D. A ^ = 60 ° .
Cho tam giác ABC AB = 3 ,BC = 6 B = 60° tính AC , góc A , góc C
AC2 = AB2 + BC2 - 2.AB.BC.cos(60)
⇒ AC2 = 27
⇒ AC = 3\(\sqrt{3}\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
⇒ \(\dfrac{3}{sinC}=\dfrac{6}{sinA}=\dfrac{3\sqrt{3}}{sin60}\)
⇒ \(\left\{{}\begin{matrix}sinA=1\\sinC=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\widehat{A}=90^0;\widehat{C}=30^0\)
cho tam giác ABC có góc A=60°;góc B=3×góc C là tam giác:
A. tam giác vuông
B. tam giác nhọn
C. tam giác tù
D. tam giác cân
A. tam giác vuông
#Học tốt!!!
~NTTH~
\(\Delta ABC\)có \(\widehat{A}=60^o\)\(\Rightarrow\widehat{B}+\widehat{C}=120^o\)
mà \(\widehat{B}=3.\widehat{C}\)\(\Rightarrow4.\widehat{C}=120^o\)\(\Rightarrow\widehat{C}=30^o\)\(\Rightarrow\widehat{B}=90^o\)
\(\Rightarrow\Delta ABC\)vuông tại B
1.Cho tam giác ABC có A + B = C + 90 và A = C + 10. Tính các góc của tam giác ABC
2.Cho tam giác ABC vuông tại A, vẽ các tia phân giác của B và C cắt nhau tại M. Tính BMC
3.Cho tam giác ABC có A =80, B = 60. Hai tia phân giác của B và c cắt nhau tại I, vẽ tia p/g góc ngoài tại B sao cho B cắt tia CI tại D
a) Tính BIC
b)CMR BDC = C
1, Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(tổng 3 góc tam giác)
\(\Leftrightarrow\widehat{C}+90^o+\widehat{C}=180^o\)
\(\Leftrightarrow2\widehat{C}=90^o\)
\(\Leftrightarrow\widehat{C}=45^o\)
\(\Rightarrow\widehat{A}=\widehat{C}+10=55^o\)
\(\Rightarrow\widehat{B}=180^o-\widehat{A}-\widehat{C}=180^o-55^o-45^o=80^o\)
2,
Vì tam giác ABC vuông tại A
=> ^B + ^C = 90o
Vì BM là phân giác ^ABC
=>^B1 = \(\frac{\widehat{ABC}}{2}\)
Tương tự ^C1 = \(\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)
Theo tổng 3 góc trong tam giác \(\widehat{BMC}=180^o-\widehat{B_1}-\widehat{C_1}=180^o-45^o=135^o\)