Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 3 2017 lúc 15:52




Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 1 2019 lúc 8:57

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 7 2019 lúc 6:38


Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 10 2017 lúc 12:21

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 12 2022 lúc 23:02

Lời giải:

$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$

Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ

$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$

$\Rightarrow h(1)=0$

$\Leftrightarrow 4m^2+2m-6=0$

$\Leftrightarrow 2m^2+m-3=0$

$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$

Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$

Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 4 2018 lúc 18:10

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 3 2018 lúc 5:15

Nhận xét: Nếu x = 1 không là nghiệm của phương trình (1) thì x = 1 là nghiệm đơn của phương trình f(x) = 0 nên f(x) đổi dấu khi qua nghiệm x = 1.

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2017 lúc 5:11

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 8 2019 lúc 18:03

Đáp án là C

Bình luận (0)