Những câu hỏi liên quan
H24
Xem chi tiết
HM
24 tháng 8 2023 lúc 10:32

\(y'=\left(cosx\right)'\\ =\left(\dfrac{\pi}{2}-x\right)'cos\left(\dfrac{\pi}{2}-x\right)\\ =-cos\left(\dfrac{\pi}{2}-x\right)\\ =-sinx\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2018 lúc 15:58

Đáp án đúng : C

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 8 2023 lúc 20:14

a: \(y'=\left(x^2-x\right)'=2x-1\)

\(y''=\left(2x-1\right)'=2\)

b: \(y'=\left(cosx\right)'=-sinx\)

\(y''=\left(-sinx\right)'=-cosx\)

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 6:49

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 6 2017 lúc 15:48

Đáp án đúng : D

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 7 2019 lúc 14:01

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 8 2019 lúc 17:00

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 9 2019 lúc 12:57

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn B.

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 6 2017 lúc 2:56

y ' = ( sin x + cos x ) ' y ' = ( sin x ) ' + ( cos x ) ' = c osx - sinx 

 Chọn đáp án C

Bình luận (0)