Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NV
Xem chi tiết
TU
Xem chi tiết
H24
Xem chi tiết
NT
27 tháng 10 2023 lúc 11:45

Xét ΔICD có \(\widehat{CID}+\widehat{ICD}+\widehat{IDC}=180^0\)

=>\(\widehat{ICD}+\widehat{IDC}=180^0-115^0=65^0\)

=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=65^0\)

=>\(\widehat{ADC}+\widehat{BCD}=130^0\)

Xét tứ giác ABCD có

\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{A}+\widehat{B}=360^0-130^0=230^0\)

mà \(\widehat{A}-\widehat{B}=50^0\)

nên \(\widehat{A}=\dfrac{230^0+50^0}{2}=140^0\)

\(\widehat{A}-\widehat{B}=50^0\)

=>\(140^0-\widehat{B}=50^0\)

=>\(\widehat{B}=140^0-50^0=90^0\)

Bình luận (0)
MT
Xem chi tiết
BN
Xem chi tiết

Bài 1) 

Trên AD lấy E sao cho AE = AB 

Xét ∆ACE và ∆ACB ta có : 

AC chung 

DAC = BAC ( AC là phân giác) 

AB = AE (gt)

=> ∆ACE = ∆ACB (c.g.c)

=> CE = CB (1)

=> AEC = ABC = 110°

Mà AEC là góc ngoài trong ∆EDC 

=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)

=> ECD = 110 - 70 

=> EDC = 40°

Xét ∆ EDC : 

DEC + EDC + ECD = 180 °

=> CED = 180 - 70 - 40 

=> CED = 70° 

=> CED = EDC = 70° 

=> ∆EDC cân tại C 

=> CE = CD (2)

Từ (1) và (2) :

=> CB = CD (dpcm)

b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°

Bình luận (0)
PH
Xem chi tiết
LN
Xem chi tiết
NT
9 tháng 7 2016 lúc 15:19

 CID = 115 . Tổng 2 góc ICD và góc IDC = 65 độ . Ta tính tổng 2 góc C và D là 65 x 2 = 130 độ . 2 góc A và B là 230 độ luôn . Ta chỉ thấy có góc A = 140 độ và góc B = 90 độ mới phù hợp

Bình luận (0)
TD
Xem chi tiết
TN
2 tháng 9 2021 lúc 8:36

Xét tam giác DIC ta có ˆIDCIDC^+ˆICDICD^=180-115=65 độ

=>ˆADBADB^+ˆBCDBCD^=2.65=130

=>ˆDABDAB^+ˆABCABC^=360-130=230

kết hợp điều kiên ta có hệ:{A+B=230A−B=50{A+B=230A−B=50

A=140 và B=90

Bình luận (0)
 Khách vãng lai đã xóa
TN
2 tháng 9 2021 lúc 8:38

undefined

Tham khảo hình và lời giải ở đây nhé ^^

Bình luận (0)
 Khách vãng lai đã xóa
DB
2 tháng 9 2021 lúc 8:47

Bằng 12/13 nha bạn.

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TA
21 tháng 8 2020 lúc 20:04

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NQ
12 tháng 8 2021 lúc 17:09

undefined

Giả sử tia phân giác của góc A và D cắt nhau tại E

ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)

Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD

b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.

ta có 

\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)

Vậy BF vuông góc với FC

Bình luận (0)
 Khách vãng lai đã xóa