Rút gọn các biểu thức sau
a) A = - 1 3 y 2 ( 6 y - 3 ) - y y + 1 2 + 1 2 y - 8
b) B = 3 x n ( 6 x n - 3 + 1 ) - 2 x n ( 9 x n - 3 - 1 ) với n là số tự nhiên.
rút gọn rồi tính giá trị biểu thức sau
a) (3x-2)2+2x(3x-2)x(3x+2)+(3x+2)2tại x =\(\dfrac{-1}{3}\)
b) (x+y-7)2 -2x(x+y-7)x(y-6)+(y+6) tại x=101
c) 4x2 -20x+27 tại x = 52,5
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
Thực hiện phép tính và rút gọn các biểu thức sau
a, P = \(\dfrac{\sqrt{3}+\sqrt{6}}{1+\sqrt{2}}\)
b, Q = (\(\sqrt{75}\) - \(\dfrac{3}{2}\) : \(\sqrt{3}\) - \(\sqrt{48}\)) . \(\sqrt{\dfrac{16}{3}}\)
a) \(P=\dfrac{\sqrt{3}+\sqrt{6}}{1+\sqrt{2}}=\dfrac{\left(\sqrt{3}+\sqrt{6}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{6}+\sqrt{6}-\sqrt{12}}{1-2}=\sqrt{12}-\sqrt{3}\)
b) \(Q=\left(\sqrt{75}-\dfrac{3}{2}:\sqrt{3}-\sqrt{48}\right)\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left(5\sqrt{3}-\dfrac{3}{2}\cdot\dfrac{1}{\sqrt{3}}-4\sqrt{3}\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\sqrt{3}\left(5-\dfrac{1}{2}-4\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\left(1-\dfrac{1}{2}\right)\cdot4=2\)
1. Rút gọn các biểu thức sau
a) sqrt (sqrt(3) - 1) ^ 2 - sqrt(3) .
b) √12 - √300 + √48
giúp e với ạ
a: \(=\sqrt{3}-1-\sqrt{3}=-1\)
b: \(=2\sqrt{3}-10\sqrt{3}+4\sqrt{3}=-4\sqrt{3}\)
Rút gọn các biểu thức sau
a, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Kết quả sau khi rút gọn biểu thức A = (x – y – 1)3 – (x – y + 1)3 + 6(x – y)2 là: …
Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)
\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)
\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)
=-2
Bài 2 rút gọn các biểu thức sau
A)(2x+3y)(x-2y)-(4x3y-6x2y2-3xy3):2xy
B) (x-2)3 -x(x+1)(x-1)-(3x-1)(3x-2)
a: \(\left(2x+3y\right)\left(x-2y\right)-\dfrac{\left(4x^3y-6x^2y^2-3xy^3\right)}{2xy}\)
\(=2x^2-4xy+3xy-6y^2-\dfrac{2xy\cdot\left(2x^2-3xy-1,5y^2\right)}{2xy}\)
\(=2x^2-xy-6y^2-2x^2+3xy+1,5y^2\)
\(=2xy-4,5y^2\)
b: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)-\left(3x-1\right)\left(3x-2\right)\)
\(=x^3-6x^2+12x-8-x\left(x^2-1\right)-\left(9x^2-6x-3x+2\right)\)
\(=x^3-6x^2+12x-8-x^3+x-9x^2+9x-2\)
\(=-15x^2+22x-10\)
rút gọn các biểu thức sau
a) (5x-1)2+(5x+1)2-2(1-25x2)
(5x-1)2+(5x+1)2-2(1-25x2)=25x2-10x+1+25x2+10x+1-2-50x2
= 0
Lời giải:
$(5x-1)^2+(5x+1)^2-2(1-25x^2)$
$=(5x-1)^2+(5x+1)^2-2(1-5x)(1+5x)$
$=(5x-1)^2+(5x+1)^2+2(5x-1)(5x+1)$
$=(5x-1+5x+1)^2$
$=(10x)^2=100x^2$
Ta có : \(\left(5x-1\right)^2-2\left(1-25x^2\right)+\left(5x+1\right)^2\)
\(=\left(5x-1\right)^2+2\left(25x^2-1\right)+\left(5x+1\right)^2\)
\(=\left(5x-1\right)^2+2\left(5x-1\right)\left(5x+1\right)+\left(5x+1\right)^2\)
\(=\left(5x-1+5x+1\right)^2=\left(10x\right)^2=100x^2\)
Rút gọn các biểu thức sau
a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
b)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
c)\(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
Help me plsss
\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)
\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)
\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\) (vì \(x>4\) )
@seven
Cho x, y là các số thực dương. Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^{\frac{1}{3}}}\sqrt y + {y^{\frac{1}{3}}}\sqrt x }}{{\sqrt[6]{x} + \sqrt[6]{y}}};\)
b) \(B = {\left( {\frac{{{x^{\sqrt 3 }}}}{{{y^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}}.\)
a: \(A=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{2}}+y^{\dfrac{1}{3}}\cdot x^{\dfrac{1}{2}}}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}\left(x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}\right)}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}=\left(xy\right)^{\dfrac{1}{3}}\)
b: \(B=\dfrac{x^{3+\sqrt{3}}}{y^2}\cdot\dfrac{x^{-\sqrt{3}-1}}{y^{-2}}=\dfrac{x^{3+\sqrt{3}-\sqrt{3}-1}}{y^{2-2}}=x^2\)