Số số hạng của dãy số \(\frac{1}{2}\); \(\frac{1}{4}\); \(\frac{1}{6}\); \(\frac{1}{8}\);.......; \(\frac{1}{2014}\)là
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho dãy số\(\frac{1}{1},\frac{1}{2},\frac{2}{2},\frac{1}{3},\frac{2}{3},\frac{3}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{4}{4},...\)
a. Tìm số hạng thứ 50 của dãy.
b. Phân số\(\frac{15}{30}\)là số hạng thứ bao nhiêu của dãy
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho dãy số
\(1,\frac{1}{2},\frac{1}{4},\frac{1}{8}, \ldots \;\) (số hạng sau bằng một nửa số hạng liền trước nó)
Công thức tổng quát của dãy số đã cho là:
A. \({u_n} = {\left( {\frac{1}{2}} \right)^n}\)
B. \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^{n - 1}}}}\)
C. \({u_n} = \frac{1}{{2n}}\)
D. \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\)
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
a) Tính thương của hai số hạng liên tiếp trong dãy số: \(2;4;8;16;32;64\).
b) Tìm điểm giống nhau của các dãy số sau:
i) \(3;6;12;24;48\).
ii) \(1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}}\).
iii) \(2; - 6;18; - 54;162; - 486\).
a, Ta có: \(\dfrac{4}{2}=2;\dfrac{8}{4}=2;\dfrac{16}{8}=2;\dfrac{32}{16}=2;\dfrac{64}{32}=2\)
b, Ta thấy:
i, Số sai bằng số liền trước nhân với 2.
ii, Số sau bằng số liền trước nhân với \(\dfrac{1}{2}\)
iii, Số sau bằng số liền trước nhân với -3.
Điểm giống nhau của các dãy số này là số sau bằng số liền trước nhân với một số không đổi.
Cho dãy số \(\frac{2}{4.11};\frac{2}{11.8};\frac{2}{18.25};.....\)
a) Tìm số số hạng tổng quát của dãy số
b) Gọi S là tổng của 100 số hạng đầu tiên của dãy. Tính S
Cho dãy số: \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
a) Hỏi số hạng thứ 10 của dãy số trên là số nào? ( dạng hỗn số )
b) Gọi A là tích 10 số hạng đầu tiên của dãy. Tính 6A.
\(a.1\frac{1}{120}\)
nha bạn
Nguyễn Anh Kim Hân\(a.1\frac{1}{120}\)
k mk nha Nguyễn Anh Kim Hân
cái biểu tượng hình cái chuông ghi là Quản lý thông báo của Online math là sao vậy các bn
Cho dãy số sau
\(\frac{1}{5};\frac{1}{45};\frac{1}{117};\frac{1}{221};\frac{1}{357};.....\)
a) Tìm quy luật của dãy số
b) Viết dạng tổng quát và tìm số hạng thứ 10, thứ 100 của dãy số
c) Tính tổng 100 số hạng đầu tiên của dãy số
cho dãy số :\(\frac{1}{1.2};\frac{1}{2.3};\frac{2}{3.5};\frac{3}{5.8};\frac{5}{8.13};..........\)
a) Viết tiếp 5 số hạng tiếp theo của dãy
b) Tính tổng của 10 số hạng đầu tiên
Cho dãy số
1;3;5;7;............
a/Tính số hạng thứ 100 của dãy
b/Tính tổng của 100 số hạng của dãy sau
\(\frac{1}{1\times3};\frac{1}{3\times5};\frac{1}{3\times7};...........;...........\)
cách tim số hạng thứ n của dãy
VD: \(\frac{1}{6};\frac{1}{66};\frac{1}{176;}\frac{1}{336;....}\)
Tím số hạng thứ 46 của dãy
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{n}{{{3^n} - 1}}\). Ba số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) lần lượt là:
A. \(\frac{1}{2};\frac{1}{4};\frac{3}{{27}}\).
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}\).
C. \(\frac{1}{2};\frac{1}{4};\frac{3}{{25}}\).
D. \(\frac{1}{2};\frac{1}{4};\frac{3}{{28}}\).
Ta có:
\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)
\(\Rightarrow B\)