Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 12 2019 lúc 7:04

Ta có: 2x + 5 = 4(x – 1) – 2(x – 3) ⇔ 2x + 5 = 2x + 2 ⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 1 2018 lúc 7:53

Nhân hai vế của phương trình (1) với 24, ta được:

7x/8 - 5(x - 9) = 1/6(20x + 1,5)

⇔21x − 120(x − 9) = 4(20x + 1,5)

⇔21x − 120x − 80x = 6 − 1080

⇔−179x = −1074 ⇔ x = 6

Vậy phương trình (1) có một nghiệm duy nhất x = 6.

Bình luận (0)
DH
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 3 2017 lúc 5:35

Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1

Vậy phương trình vô nghiệm.

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 5 2017 lúc 9:27

Ta có:

4(x – 2) – 3x = x – 8

⇔ 4x – 8 – 3x = x – 8

⇔ x – 8 = x – 8 (thỏa mãn với mọi x)

Vậy phương trình đã cho có vô số nghiệm.

Bình luận (0)
KA
Xem chi tiết
LT
23 tháng 3 2020 lúc 11:54

a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)

\(\Leftrightarrow0x=-9\)(vô lí)

Vậy phương trình vô nghiệm

b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)

chúc bn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
16 tháng 4 2019 lúc 6:27

Ta có:

2x – 3 = 2(x – 3)

⇔ 2x – 3 = 2x – 6

⇔ 2x - 2x = 3 – 6

⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm

Bình luận (0)
T1
Xem chi tiết
VT
19 tháng 9 2016 lúc 10:41

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)

\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)

Có : \(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vậy pt vô nghiệm .

Bình luận (0)
HN
19 tháng 9 2016 lúc 11:34

Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)

Dấu "=" không xảy ra nên pt vô nghiệm.

Cách 2. Ta có  \(x^2+x+3=\left(x^2+x+1\right)+2\)

Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.

=> PT vô nghiệm.

Bình luận (0)
PT
19 tháng 9 2016 lúc 10:46

x2+x+3

=x2+2.x.\(\frac{1}{2}\) +\(\left(\frac{1}{2}\right)^2\)+\(\frac{11}{4}\)

=(x+\(\frac{1}{2}\))2+\(\frac{11}{4}\ge\frac{11}{4}>0\)

Vậy phương trình trên vô nghiệm.

Bình luận (0)
H24
Xem chi tiết
LH
13 tháng 7 2016 lúc 18:56

Đặt \(B=x^2+x+3=0\)

\(\Rightarrow2B=2x^2+2x+3=0\)

\(=x^2+\left(x^2+2x+1\right)+2=0\)

\(=x^2+\left(x+2\right)^2+2=0\)

\(\Rightarrow x^2+\left(x+2\right)^2=-2\)

Có:

\(x^2\ge0\)

\(\left(x+2\right)^2\ge0\)

\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)

Mà \(-2< 0\)

Vì vậy phương trình vô nghiệm.

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 3 2021 lúc 15:01

undefined

Bình luận (0)