Những câu hỏi liên quan
PB
Xem chi tiết
CT
2 tháng 4 2017 lúc 16:32

Chọn đáp án A.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bình luận (0)
FF
Xem chi tiết
ST
2 tháng 12 2018 lúc 17:15

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)

<=>\(\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)

<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=>\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)

Bình luận (1)
DH
2 tháng 12 2018 lúc 17:18

 x/(y+z)+y/(x+z)+z/(x+y)=1

=>\(\frac{x^2}{\left(y+z\right)^2}\)+\(\frac{y^2}{\left(x+z\right)^2}\)+\(\frac{z^2}{\left(x+y\right)^2}\)+2(\(\frac{xy}{\left(y+z\right)\cdot\left(x+z\right)}\)+\(\frac{yz}{\left(x+z\right)\left(x+y\right)}\)+\(\frac{zx}{\left(z+y\right)\cdot\left(x+y\right)}\))=1

Bình luận (0)
NB
Xem chi tiết
VT
Xem chi tiết
TC
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Bình luận (0)
TC
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

Bình luận (1)
H24
Xem chi tiết
MY
26 tháng 1 2022 lúc 18:55

\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le0\)

\(\Leftrightarrow xyz-2\left(xy+yz+xz\right)+4\left(x+y+z\right)-8\le0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)\le8-4\left(x+y+z\right)-xyz=8-4.3+0=-4\left(xyz\ge0\right)\)

\(A=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+xz\right)\le3^2-4=5\)

\(max_A=5\Leftrightarrow\left\{{}\begin{matrix}xyz=0\\\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\\x+y+z=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y;z\right)=\left\{0;1;2\right\}\) \(và\) \(các\) \(hoán\) \(vị\)

 

Bình luận (0)
VT
Xem chi tiết
KB
30 tháng 4 2019 lúc 15:23

Đặt 1/x = a ; 1/y = b ; 1/z = c 

Ta có : \(a+b+c=2;2ab-c^2=4\)

\(a^2+b^2+c^2+2ab+2bc+2ac=2ab-c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2bc+2ac+c^2=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)

=> a + c = 0 và b + c = 0 

=> a = b = -c 

\(\Rightarrow\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)

Khi đó , ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-\frac{2}{z}+\frac{1}{z}=-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)

\(P=\left(x+2y+z\right)^2=4z^2\) \(=4.\left(-\frac{1}{2}\right)^2=1\)

Tham khảo nha 

Bình luận (0)
KB
30 tháng 4 2019 lúc 15:24

\(\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\Rightarrow x=y=-z\) 

Bình luận (0)
LG
Xem chi tiết
NQ
Xem chi tiết
CH
Xem chi tiết
PH
4 tháng 3 2016 lúc 10:40

Áp dụng tích chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

=> x=y=z 

Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2

          1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2

    1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2

Vậy B= 2.2.2 = 8

Bình luận (0)