Những câu hỏi liên quan
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 20:25

a) Từ 4 chữ số 0, 1, 2, 3:

- Hàng trăm có 3 cách chọn.

- Hàng chục có 3 cách chọn.

- Hàng đơn vị có 2 cách chọn.

Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.

b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 3 = 6 số có thể lập được.

- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 2 = 4 số có thể lập được.

Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

Bình luận (0)
TL
Xem chi tiết
BD
18 tháng 12 2016 lúc 22:30

3510;5310;1350;1530;5130;3150

dễ mà bạn

Bình luận (0)
DM
19 tháng 12 2016 lúc 14:08

1350;5310;3150;5130;1530;3510

khó hơn đi

Bình luận (0)
1D
Xem chi tiết
HK
14 tháng 1 2022 lúc 22:49

Gọi abc là stn có ba chữ số khác nhau cần tìm

TH1: c = {0} -> 1cc                                                       TH2: c = {2;4;6} -> 3cc

a \ {c} -> 6cc                                                                    a \ {0;c) -> 5cc

b \ {a;c} -> 5cc                                                                 b \ {a;c} -> 5cc

<=>(6*5)+(3*5*5)=105 số

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 6 2017 lúc 17:13

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là 

Bình luận (0)
VT
Xem chi tiết
HD
14 tháng 1 2016 lúc 20:45

6 số chúc bạn thi toán đc điểm cao nha !!!

Bình luận (0)
NN
14 tháng 1 2016 lúc 20:57

Có 3 cách chọn chữ số làm hàng trăm(không tính chữ số 0 vì 0 không làm được chữ số đứng đầu)

     2 cách chọn chữ số làm hàng chục(không tính chữ số 0 vì chỉ có chữ số 0 có thể làm hàng đơn vị mà đề bài yêu cầu khác nhau và không tính chữ số đã làm trăm)

     1 cách chọn chữ số làm hàng đơn vị( không tính chữ số đã làm hàng trăm và hàng chục)

Vậy có số các số chẵn có 3 chữ số khác nhau là:

   3*2*1=6(số)

        Đáp số : 6 số

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2019 lúc 14:28

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là

(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là  {b,c}).

Suy ra, số các số tự nhiên thỏa đề ra là 

Bình luận (0)
H24
26 tháng 9 2023 lúc 20:01

KO PHẢI  PHẢI LÀ CHỮ SỐ 0,1,5,7,8 MỚI ĐÚNG

 

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 10 2017 lúc 8:07

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d ∈ 0 , 2 , 4 .

TH1. Nếu  d = 0 số cần tìm là a b c 0 ¯ .  Khi đó: A \ 0 ,    a ,    b

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 = 60  số có dạng  a b c 0 ¯ .

TH2. Nếu d = 2 , 4 ⇒    d :  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 =  96 số

Vậy có tất cả 60 + 96 = 156 số

Chọn đáp án A.

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 3 2017 lúc 17:00

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d = 0 , 2 , 4 .

TH1. Nếu d= 0,  số cần tìm là a b c 0 ¯ .  Khi đó:

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập A \ 0 ,    a ,    b  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 =  60 số có dạng  a b c 0 ¯ .

TH2. Nếu d ∈ 2 , 4 ⇒    d  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),

b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.

Vậy có tất cả 60 +96 = 156 số cần tìm.

Chọn đáp án A.

Bình luận (0)
HC
Xem chi tiết