Những câu hỏi liên quan
H24
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 2 2019 lúc 5:22

Đáp án A

Dùng công thức  để đưa phương trình ban đầu về đa thức bậc 2 theo sin x.
Giải phương trình này tìm x và đối chiếu với yêu cầu  để tìm được giá trị của x.

Ta có

Do đó tập nghiệm của phương trình đã cho trên 0 ; 10 π  

Bình luận (0)
KM
Xem chi tiết
NL
7 tháng 11 2021 lúc 20:52

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 9 2019 lúc 6:27

Đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 10 2017 lúc 18:05

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 3 2019 lúc 8:14

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 5 2017 lúc 11:16

Đáp án A.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 4 2019 lúc 12:38

Chọn A

Bình luận (0)
DV
Xem chi tiết
NL
22 tháng 12 2020 lúc 7:36

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 1 2019 lúc 3:52

Bình luận (0)