Tìm giá trị của x để giá trị của mỗi phân thức sau được xác định: ( 3 x + 2 ) ( 2 x 2 - 6 x )
Tìm giá trị của x để giá trị của mỗi phân thức sau được xác định: 5 x 2 - 3
Cho phân thức :\(\dfrac{3x+3}{x^2-1}\)
a) Tìm điều kiện của x để giá trị của phân thức được xác định . Tìm giá trị của x để phân thức có giá trị bằng -2
b) Tìm giá trị của x để phân thức có giá trị là số nguyên
\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)
1.Cho biểu thức C = x³/x²-4 - x/x-2 - 2/x+2
a,tìm giá trị của biến để biểu thức được xác định
b,Tìm x để C=0
c,Tìm giá trị nguyên của x để C nhận giá trị dương
2,cho P = (2+x/2-x + 4x²/x²-4 - 2-x/2+x): x²-3x/2x²-x³
a,Tìm điều kiện của x để giá trị của P được xác định
B, rút gọn P
c,Tính giá trị P với |x-5|=2
d,Tìm x để P<0
3,cho biểu thức B = [x+1/2x-2 + 3/x²-1 - x+3/2x+2]. 4x²-4/5
a,Tìm điều kiện của x để giá trị biểu thức được xác định
b,CMR khi giá trị của biểu thức không phụ thuộc vào giá trị của biến x?
4,Cho phân thức C = 3x²-x/9x²-6x+1
a, tìm điều kiện xác định phân thức
b,tính giá trị phân thức tại x=-8
c,Tìm x để giá trị của phân thức nhận giá trị dương
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
chết mk nhìn nhầm phần c bài 2 :
\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
Để P xác định
\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)
\(2+x\ne0\Rightarrow x\ne-2\)
\(x^2-4\ne0\Rightarrow x\ne0\)
\(x^2-3x\ne0\Rightarrow x\ne3\)
b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)
\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)
d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)
\(TH1:8x^2-4x^3< 0\)
\(\Rightarrow8x^2< 4x^3\)
\(\Rightarrow2< x\Rightarrow x>2\)
\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)
3) Cho phân thức \(\frac{3x+3}{x^2-1}\)
a,tìm điều kiện xác định của x để giá trị của phân thức được xác định.Tìm giá trị của x để phân thức có giá trị bằng -2
b,tìm giá trị của x để phân thức có giá trị là số nguyên.
Bài 3 :
a) Phân thức xác định \(\Leftrightarrow x^2-1\ne0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)
Ta có :
\(A=\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)
Để A có giá trị bằng -2 thì \(\frac{3}{x-1}=-2\)
\(\Leftrightarrow3=-2x+2\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
b) Để A là số nguyên thì :
\(3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{2;4;0;-2\right\}\)( thỏa mãn ĐKXĐ )
Vậy...........
\(a,ĐKXĐ:x\ne\pm1\)
Ta có : \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)
\(\Rightarrow\frac{3x+3}{x^2-1}=-2\Leftrightarrow\frac{3}{x-1}=-2\)
\(\Leftrightarrow-2\left(x-1\right)=3\)
\(\Leftrightarrow-2x+2=3\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(b,\) Để phân thức \(\frac{3x+3}{x^2-1}\) có giá trị nguyên thì \(\frac{3}{x-1}\) có giá trị nguyên
\(\Rightarrow3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Vậy \(x=-2;0;2;4\)
đkxđ : x - 1 khác 0 <=> x=1
x +1 khác 0 <=> x= -1
2/ Cho phân thức: x^2+6x+9/x+3
a/ Tìm điều kiện của x để giá trị của phân thức được xác định ?
b/ Rút gọn phân thức
c/ Tìm giá trị của x để giá trị của phân thức bằng -5
d/ Tính giá trị của phân thức tại x =1/2
Bài 1: Cho phân thức: 3x2+6x+12x3−83x2+6x+12x3−8
a,Tìm điều kiện của x để phân thức đã cho được xác định
b, Rút gọn phân thức
c, Tính giá trị của phân thức sau khi rút gọn với x = 4001200040012000
Bài 2: Cho phân thức: x2−10x+25x2−5xx2−10x+25x2−5x
a, Tìm giá trị của x để phân thức bằng 0
b, Tìm x để giá trị của phân thức bằng 5252
c, Tìm x nguyên để phân thức có giá trị nguyên
Bài 3: Cho biểu thức: (x+12x−2+3x2−1−x+32x+2)(4x2−45)(x+12x−2+3x2−1−x+32x+2)(4x2−45)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định
b, CMR: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
x−5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x−5x phải có giá trị nguyên.
x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25
25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25
25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25
2(x+1)25+185−25x2−45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x+1)25+185−25x2−45x
2(x2+2x+1)5+185−25x2−45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x2+2x+1)5+185−25x2−45x
2x2+4x+25+185−25x2−45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+25+185−25x2−45x
2x2+4x+2+185−25x2−45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+2+185−25x2−45x
2x2+4x+205−25x2−45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
Cho phân thức A=\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}\)
a)Tìm điều kiện của x để giá trị của phân thức được xác định
b)Tìm giá trị của x để phân thức có giá trị bằng 2
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
Tìm điều kiện để phân thức \(\frac{2x-2}{x^2-x}\) được xác định
a) Tính giá trị của phân thức tại x=3 và x=0
b) Tính giá trị của x để phân thức có giá trị bằng 2
c) Tìm giá trị của x để phân thức có giá trị là số nguyên
Đặt phân thức đã cho là A
\(ĐKXĐ:x^2-x\ne0\)\(\Leftrightarrow x\left(x-1\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
a) \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)
Với \(x=3\)( thoả mãn ĐKXĐ ) \(\Rightarrow A=\frac{2}{3}\)
Với \(x=0\)( không khoả mãn ĐKXĐ ) \(\Rightarrow\)Không tìm được giá trị của A
b) \(A=2\)\(\Leftrightarrow\frac{2}{x}=2\)\(\Leftrightarrow x=1\)( không thoả mãn ĐKXĐ )
Vậy không tìm được giá trị của x để \(A=2\)
c) A có giá trị nguyên \(\Leftrightarrow\frac{2}{x}\inℤ\)\(\Leftrightarrow2⋮x\)\(\Leftrightarrow x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=1\)không thoả mãn
Vậy A nguyên \(\Leftrightarrow x\in\left\{-2;-1;2\right\}\)
ĐKXĐ:
----------->x khác 0
---------->(x-1) khác 0 ----------> x khác 1
VẠY ĐKXĐ LÀ X khác 0 và 1.
Bạn tự rút gọn nha
a, 2x-2\ x^2-x= 2\x
Thay x=3 vào biểu thức có:
-----> = 2\3
Vậy nếu thay x=3 vào biểu thức thì = 2\3
thay x=0 vào biểu thức có
------> = 0 vì 2\0=0
VẬY nếu thay x=0 thì biểu thức thì =0
b,
theo đề bài ta có
2\x=2
-----> 2:x=2
Vậy x=1
Câu c mik ko chắc nên bn tự làm nha
mik rất sorry:(((((((
\(x^2-x=x\left(x-1\right)\)
Phân thức xác định khi: \(\Leftrightarrow x\left(x-1\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
ĐKXĐ: \(x\ne0,x\ne1\)
a) Ta có: \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)
+) Với x = 3
\(A=\frac{2}{3}\)
+) Với x = 0 (không tmđk)
=> Loại
\(A=2\Rightarrow\frac{2}{x}=2\Rightarrow x=1\)(không tmđk)
Bài 9: Cho biểu thức: [(4/x-4)-(4/x-4)].(x^2+8x+16/32)
a) Tìm điều kiện của x để phân thức xác định?
b) Tìm giá trị của x để phân thức có giá trị bằng 1/3
c) Tìm giá trị của x để phân thức có giá trị bằng 1
d) Tìm giá trị nguyên của x để phân thức có giá trị nguyên?
e) Tìm giá trị của x để phân thức luôn dương?