Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0: x – y – 3
Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0: 2x + y – 1
Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1
Có vô số giá trị của x và y để biểu thức trên xảy ra
Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)
Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)
Tìm các cặp giá trị \(x,y\) để các đa thức sau nhận giá trị bằng 0 :
a) \(2x+y-1\)
b) \(x-y-3\)
a) 2x + y – 1 = 0 => 2x + y = 1 có vô số giá trị
Các cặp giá trị có dạng (x∈ R; y = 1 – 2x)
Ví dụ: (x = 0; y =1); (x = 1; y = -1); ….
b) x – y – 3 => x – y = 3 có vô só giá trị
Các cặp giá trị có dạng (x∈ R; y = x – 3)
Ví dụ: (x = 0; y = -3); (x = 1; y = -2); ….
a) 2x + y - 1 = 0
giả sử nếu x = 3 thì ta có
2*3 + y - 1 =0
6-y+1=0
7-y=0
y=7
Vậy x=3 thì y = 7
b) x - y -3 = 0
Gỉa sử x = 4 thì ta có
4 - y - 3 = 0
1 - y = 0
y = 1
Vậy nếu x = 4 thì y = 1
Tìm các cặp giá trị x, y để các đa thức sau nhận giá trị bằng 0 :
a) 2x+y-1 b) x-y-3
Làm ơn giúp mình mai thi rồi!!! Nhờ giải chi tiết...
Cho đa thức R=x^2+y^3+z^4 tìm tất cả các giá trị x,y,z nguyên dương để giá trị của đa thức R bằng 90
1. tìm các giá trị của x để các biểu thức sau nhận giá trị âm:
a, x2+5x.
b,3(2x+3)(3x-5).
2.tìm các giá trị của y để các biểu thức sau nhận giá trị dương:
a, 2y2-4y.
b, 5(3y+1)(4y-3)
số các cặp số nguyên (x y) để biểu thức sau nhận giá trị lá số nguyên: H=3x.(x+y)-6.(x+y)+1
Vì các số 3 ; x ; y ; 6 ; 1 đều là các số nguyên
Nên x; y thuộc mọi giá trị nguyên thì H vẫn là số nguyên
tìm các giá trị của x để các biểu thức sau nhận giá trị âm
a) x2+5x
b) 3(2x+3) (3x-5)
bài 2. tìm các giá trị của x để biểu thức sau nhận giá trị dương
a)2y2-4y
b) 5(3y+1) (4y-3)
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
Bài 2:
a: \(2y^2-4y>0\)
\(\Leftrightarrow y\left(y-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>2\\y< 0\end{matrix}\right.\)
b: \(5\left(3y+1\right)\left(4y-3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}y>\dfrac{3}{4}\\y< -\dfrac{1}{3}\end{matrix}\right.\)
Bài 1: tìm các giá trị của x để các biểu thức sau nhận giá trị âm
a) x mũ 2+5x
b) 3(2x+3)(3x-5)
Bài 2: tìm các giá trị của y để các biểu thức sau nhận giá trị dương
a) 2y mũ 2 - 4y
b) 5(3y+1)(4y - 3)
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
tìm giá trị của các biến để các biểu thức sau đây có giá trị = 0
a) 16 - x 2
b) (x + 1)2 + ( 2 y - 3 )10
a.\(16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=4^2\)
\(\Leftrightarrow x=\pm4\)
b.\(\left(x+1\right)^2+\left(2y-3\right)^{10}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(2y-3\right)^{10}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2y-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{2}\end{matrix}\right.\)