Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 1 2 + z 2 = 1 . Tìm khoảng cách ngắn nhất từ gốc tọa độ O(0;0;0) đến mặt cầu (S).
A. 1 + 1 2
B. 2 − 1
C. 2 + 1
D. 2 2 − 1
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Đáp án A
Mặt cầu (S) có tâm I(-1;2;1) và bán kính R=√9=3.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x + 1 2 + y - 3 2 + z - 2 2 = 9 Tọa độ tâm và bán kính của mặt cầu (S) là
A. I(-1;3;2) R =9
B. I(1;-3;-2) R = 9
C. I(-1;3;2) R = 3
D. I(1;3;2) R = 3
Đáp án C
Tọa độ tâm và bán kính mặt cầu (S): I(-1;3;2) R = 3
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng α : x = 1 , β : y = - 1 , γ : z = 1 . Bán kính mặt cầu (S) bằng:
A. 3
B. 1
C. 3 2
D. 33
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng α : x = 1 , β : y = - 1 , γ : z = 1 . Bán kính mặt cầu (S) bằng:
A. 3
B. 1
C. 3 2
D. 33
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x − 1 2 + y − 2 2 + z + 1 2 = 1 , phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là
A. Q : 4 y + 3 z = 0
B. Q : 4 y + 3 z + 1 = 0
C. Q : 4 y − 3 z + 1 = 0
D. Q : 4 y − 3 z = 0
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng B y + C z = 0
+ Do mặt cầu tiếp xúc với mặt phẳng nên:
2 B − C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4 y + 3 z = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x - 1 2 + y - 2 2 + z + 1 2 = 1 , phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là
A. (Q): 4y +3z = 0
B. (Q): 4y +3z +1= 0
C. (Q): 4y -3z +1= 0
D. (Q): 4y -3z = 0
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng By+Cz=0
+ Do mặt cầu tiếp xúc với mặt phẳng nên 2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4y +3z=0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là x²+y²+z²-2x-4y-6z+5=0. Tính diện tích mặt cầu (S).
A. 42π
B. 36π
C. 9π
D. 12π.
Đáp án B
Mặt cầu (S) có tâm I(1;2;3) và bán kính R=3. Diện tích mặt cầu (S) là S=4π R²=36π.