Cho hình thang cân ABCD (AB//CD) có góc C + góc D = 100° . Tính số đo góc A
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Cho hình thang cân ABCD ( AB // CD ) có góc A= 2 góc C . Tính số đo các góc của hình thang cân
\(\widehat{A}=\widehat{B}=120\)
\(\widehat{C}=\widehat{D}=60\)
Vì ABCD là hình thang cân
=> \(\hept{\begin{cases}\widehat{C}=\widehat{D}\\\widehat{B}=\widehat{A}\end{cases}}\)
Mà \(\widehat{A}=2\widehat{C}\)
=> \(\widehat{A}=2\widehat{D}\)
Vì AB // CD
=> \(\widehat{A}+\widehat{D}=180^o\)
Thay \(\widehat{A}=2\widehat{D}\)
=> \(3\widehat{D}=180^o\)
=> \(\widehat{D}=180^o:3=60^o\)
và \(\widehat{A}=2.\widehat{D}=2.60^o=120^o\)
Vì \(\widehat{C}=\widehat{D}\Rightarrow\widehat{C}=60^o\)
Vì \(\widehat{B}=\widehat{A}\Rightarrow\widehat{B}=120^o\)
Vậy \(\widehat{A}=120^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=60^o\)
Cho hình thang cân ABCD (AB//CD)có góc A=2 góc C. Tính các số đo của các góc của hình thang
Cho hình thang ABCD (AB//BC). Tính số đo các góc A và C biết góc B=130 độ, góc D=55 độ
Cho hình thang ABCD (AB//BC). Tính số đo các góc của hình thang biết góc A=1/3 góc D và góc B-C=70 độ
Cho hình thang ABCD (AB//BC) có góc A=100 độ, góc C=70 độ và cạnh đáy AB bằng cạnh bên AD, chứng minh tam giác cân.
Nhờ bạn nào giải giúp mình với ạ, cảm ơn nhìu.
cho hình thang cân ABCD( AB // CD ) có góc A = 50 độ , C = 2 lần góc B tính số đo các góc của tứ giác ABCD
1/Cho hình thang ABCD ( AB//CD), biết góc A = 100 độ, góc B =120 độ, tìm số đo góc C và góc D
2/Hình thang Câ ABCD có đáy nhỏ AB =10 cm, đáy lớn CD =20 cm và đường cao AH = 12cm. Tính độ dài cạnh bên
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
cho hình thang cân abcd(ab//cd) có đáy nhỏ AB=AD=1cm,đường chéo BD vuông góc với BC
a)C/m BD là tia phân giác của góc ADC
b)tính số đo các góc của hình thang cân ABCD
\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A
Do đó \(\widehat{ADB}=\widehat{ABD}\)
Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)
Vậy BD là p/g \(\widehat{ADC}\)
\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)
Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)
\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)
Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)
Cho hình thang cân ABCD , AB//CD, AC vuông góc vs BC, DB là tia phân giác của góc D
a, CM góc BCD= 2. góc BDC
b, Tính số đo các góc của hình thang ABCD.
c, Biết BC=3 cm. Tính diện tích hình thang ABCD