19 × 2 mũ 3x + 8 × y mũ 3 = 235
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
h, ( 27x mũ 3 - 8 ) : ( 3x - 2 )
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)
Bài 1:Tính
1, 5 mũ 3
2, 2 mũ 7
3, 4 mũ 4
4, 7 mũ 3
6, 3 mũ 5
7, 2 mũ 6
8, 3 mũ 4
9, 8 mũ 3
11, 13 mũ 2
12, 11 mũ 2
13, 14 mũ 2
14, 15 mũ 2
16, 17 mũ 2
17, 18 mũ 2
18, 19 mũ 2
19, 20 mũ 2
21, 10 mũ 4
22, 10 mũ 5
23, 10 mũ 6
24, 10 mũ 7
CÁC BẠN ƠI GIÚP MÌNH VỚI !!
1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000
a,( a mũ 3 - b mũ 3 ) + ( a-b)mũ 2
b, ( y mũ 3 + 8) + ( y mũ 2 - 4)
c, ( 3x-5) mũ 2-(x+1) mũ 2 = 0
d, ( 5x - 4 ) mũ 2 - 49x mũ 2 = 0
e, ( 64a mũ 3 + 125b mũ 3 ) + 5b ( 16a mũ 2 - 25b mũ 2)
g, x mũ 6 - 1
h, 1- ( x mũ 2- 2xy +y mũ 2 )
Mn giúp mik với ạ !!!!
1, 8/x+7 là số hữu tỉ âm
2, -10/x+7 là số hữu tỉ âm
3,x+2/x-6 là số hữu tỉ dương
4,x+2/x-6 là số hữu tỉ âm
Các bạn ơi giúp mình vs ak,mình đang cần gấp!!!!!!
a) \(9^{21}.9^{33}=9^{21+33}=9^{54}\)
b) \(19^{11}.19.19=19^{11+1+1}=19^{13}\)
c) \(25^2.5^2.125=5^4.5^2.5^3=5^{4+2+3}=5^9\)
d) \(t^{2021}.t^2.\left(t^2\right)^2=t^{2021}.t^2.t^4=t^{2021+2+4}=t^{2027}\)
e) \(123^{14}:123^{13}=123^{14-13}=123\)
f) \(64^2:8^3=\left(8^2\right)^2:8^3=8^4:8^3=8^{4-3}=8=2^3\)
g) \(6^{10}:6^3:36=6^{10}:6^3:6^2=6^{10-3-2}=6^5\)
h) \(m^{20}:m^{10}.m^{10}=m^{20-10+10}=m^{20}\)
A = 16 x mũ 4 - 8x mũ 3 y + 7x mũ 2 y mũ 2 - 9y mũ 4
B = -15 x mũ 4 + 3x mũ 3 y - x mũ 2 y mũ 2 - 6y mũ 4
C = 5x mũ 3 y + 3x mũ 2 y mũ 2 + 17 y mũ 4 + 1
Chứng minh rằng ít nhất 1 trong 3 đa thức này có giá trị dương với mọi x , y
Bài 1: Rút gọn các biểu thức sau
a) (5x-y)(25x mũ 2 + 5xy + y mũ 2)
b) (x-3)(x mũ 2 + 3x + 9)-(54 + x mũ 3)
c) (2x+y)(4x mũ 2 - 2xy + y mũ 2) - (2x-y)(4x mũ 2 + 2xy + y mũ 2)
d) (x+y) mũ 2 + (x-y) mũ 2 + (x+y)(x-y) - 3x mũ 2
e) (x-3) mũ 3 - (x-3)(x mũ 2 + 3x + 9) +6(x+1) mũ 2
f) (x+y)(x mũ 2 - xy + y mũ 2) + (x-y)(x mũ 2 + xy + y mũ 2) - 2x mũ 3
g) x mũ 2 + 2x(y+1) + y mũ 2 + 2y + 1
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
1. 6 X mũ 3 -8 =40
2. 4 X mũ 5 +15=47
3. 2 X mũ 3-4=12
4. 5 X mũ 3-5=0
5. (X -5) mũ 2016 = (X-5) mũ 2018
6. (3X -2) mũ 20= (3X-1) mũ 20
7. (3X -1) mũ 10 = (3X-1) mũ 20
8. (2X -1) mũ 50 = 2X-1
9. (X phần 3 -5) mũ 2000= ( X phần 3-5) mũ 2008
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(5.\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Leftrightarrow\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-5-1\right)\left(x-5+1\right)=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x=6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{4;5;6\right\}\)
bài 1
15x mũ 2 y mũ 2 z :3xyz
3x mũ 2 .(5x mũ 2-4x+3)
(2x mũ 2 -3x):(x-4)
-5xy (3x mũ 2y -5xy +y mũ 2)
(4 phấn 3y mũ 3 +2 phấn 3y mũ 2-1 phần 3).-3y mũ 2
(-2x mũ 3-1 phần 4y-4yz).8xy mũ 2
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
tìm x, biết:
a) (2x-1) mũ 20= (2x-1)mũ 18
b) ( 2x-3) mũ 2= 9
c) (x-5) mũ 2 = (1-3x)mũ 2
bài 2: Chứng minh rằng:
a) 15 mũ 20 - 15 mũ 19 chia hết cho 14
b) 3 mũ 20 + 3 mũ 21+ 3 mũ 22 chia hết cho 13
c) 3+ 3 mũ 2 + 3 mũ 3+.......+ 3 mũ 2007 chia hết cho 13
7 mũ 1+ 7 mũ 2+ 7 mũ 3+.........+ 7 mũ 4n chia hết cho 400
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)