Những câu hỏi liên quan
DD
Xem chi tiết
NL
Xem chi tiết
SK
Xem chi tiết
NH
20 tháng 5 2017 lúc 13:01

Khối đa diện

nên \(V_{A'B'C'D'}=\dfrac{1}{27}V_{ABCD}=\dfrac{\sqrt{2}}{324}a^2\)

Bình luận (0)
KT
Xem chi tiết
KN
27 tháng 9 2020 lúc 18:23

Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.

Ta có a + b + c > BD + c > d.

Do đó a + b + c + d > 2d hay S > 2d (*)

Ta có: S\(⋮\)a => S = m.a (m\(\in\)N)   (1)

S\(⋮\)b => S = n.b (n\(\in\)N)               (2)

S\(⋮\)c => S = p.d (p\(\in\)N)               (3)

S\(⋮\)d => S = q.d (q\(\in\)N)              (4)   . Từ (4) và (*) suy ra q.d > 2d => q > 2

Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2

Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6

Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S

Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)

hay \(\frac{19}{20}\ge1\)(vô lí)

Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
ON
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 1 2017 lúc 10:35

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 8 2018 lúc 14:29

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2017 lúc 5:49

Đáp án là B

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2020 lúc 9:09

Đáp án là B

Gọi K là trọng tâm tam giác ABC, N đỗi xứng với D qua J, qua K  kẻ KO song song với DN ta có O là tâm mặt cầu cần xác định.

Bình luận (0)
JP
Xem chi tiết