Cho a,b,c∈Z biết \(a+b+c⋮12\)
CMR: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-5abc⋮12\)
Bài 1: Cho a,b,c∈Z,\(a^2+b^2+c^2⋮9\). CMR: abc⋮3
Bài 2: Cho a,b,c,d bất kì nguyên. CMR:\(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)⋮12\)
Bài 3: Tìm \(n\in N\)*:\(n.2^n+3^n⋮5\)
1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó
2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3.
Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)
Ta có 2 TH sau:
- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)
\(\Rightarrow\) Tích đã cho chia hết 12
- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)
3. Với \(n=1\) thỏa mãn
Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)
\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)
Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)
Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)
TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)
\(\Rightarrow n=10m+4\)
TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)
Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5
Cho a+b+c=0 CMR:\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath tham khảo
Cho a + b + c= 0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a+b+c=0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
\(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Rightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Rightarrow a^5+b^5+c^5+5ab\left[a^3+2a^2b+2ab^2+b^3\right]=0\)
\(\Rightarrow a^5+b^5+c^5+5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]=0\)
\(\Rightarrow a^5+b^5+c^5+5ab\left(a+b\right)\left(a^2+ab+b^2\right)=0\)
\(\Rightarrow2\left(a^5+b^5+c^5\right)+5ab\left(-c\right)\left[2a^2+2ab+2b^2\right]=0\)
\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[\left(a^2+2ab+b^2\right)+a^2+b^2\right]=0\)
\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[a^2+b^2+c^2\right]=0\)
\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Chúc bạn học tốt.
Cho \(a,b,c\in Z\) để \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=a+b+c\)
CMR: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3⋮81\)
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
Cho \(a+b+c=0\).CMR
a) \(a^3+b^3+c^3=3abc\)
b) \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
c) \(\left(a^2+b^2+c^2\right)=2\left(a^4+b^4+c^4\right)\)
a,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
b,Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath
c,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
cho \(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
cmr\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Ta có:
\(\dfrac{a.\left(x+z\right)}{abc}=\dfrac{b.\left(z+x\right)}{abc}=\dfrac{c.\left(x+y\right)}{abc}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{z+x-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c.\left(a-b\right)}\left(1\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{y+z-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b.\left(c-a\right)}\left(2\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a.\left(b-c\right)}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra:
\(\dfrac{y-z}{a.\left(b-c\right)}=\dfrac{z-x}{b.\left(c-a\right)}=\dfrac{x-y}{c.\left(a-b\right)}\)
cmr nếu\(a\left(z+y\right)=b\left(z+x\right)=c\left(x+y\right);a\ne b\ne c\ne0\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
đề đúng mà bn
đề đúng thì giải giùm ik bạn ơi
a) Cho \(x^2+y^2+z^2=xy+yz+zx\). CMR : x=y=z
b) cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+4\left(ab+ac+bc\right)=4\left(a^2+b^2+c^2\right)\). CMR : a=b=c