Trong tam giác ABC nếu A B = 5 c m , A C = 12 c m . Thì độ dài cạnh BC có thể là:
A. 5cm
B. 8cm
C. 6cm
D. 18cm
Bộ ba độ dài nào dưới đây có thể tạo thành độ dài của 3 cạnh trong tam giác?
a) 5 cm; 10 cm; 12 cm.
b) 1 m; 2 m; 3 m.
c) 6 m; 9 m; 8 m.
a) Có, vì 12 < 5 + 10.
b) Không, vì 1 + 2 = 3
c) Có, vì 9 < 6 + 8.
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau :
a) 9 cm, 15 cm, 12 cm
b) 5 dm, 13 dm, 12 dm
c) 7 m, 7 m, 10 m
a) ta có \(9^2+12^2=81+144=225=15^2\)
vậy tam giác có độ dài 3 cạnh lần lượt là 9 cm, 15 cm, 12 cm là tam giác vuông
b) ta có \(5^2+12^2=25+144=169=13^2\)
vậy tam giác có độ dài 3 cạnh lần lượt là 5 dm, 13 dm, 12 dm là tam giác vuông
c) ta có \(7^2+7^2=49+49=98\\ 10^2=100\) và 98 khác 100
vậy tam giác có độ dài 3 cạnh lần lượt là 7 dm, 7 dm, 10 dm không phải là tam giác vuông
chứng minh rằng nếu a,b,c thỏa mãn là độ dài 3 cạnh của 1 tam giác ABC thì a^2(b-c)-b^2(a-c)+c^2(a-b)=0 thì ABC cân
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
1, Áp dụng định lý Pytago. Chứng minh rằng nếu ta có a, b, c > 0 sao cho a = m2 + n2 ; b = m2 - n2 ; c = 2mn thì a, b, c là số đo 3 cạnh của tam giác vuông.
2, Các ạnh góc vuông của một tam giác vuông có độ dài a, b và diện tích bằng S. Tính các góc của tam giác vuông đó biết (a + b)2
3, Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác vuông (với a là độ dài cạnh huyền) thì các số x, y, z sau đây cũng là độ dài cạnh của tam giác vuông: x = 9a + 4b +8c ; y = 4a + b+ 4c ; z = 8a + 4b + 7c
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}\)
Chứng minh rằng
a) Nếu a, b, c là độ dài 3 cạnh của một tam giác thì M>1
b) Nếu M=1 thì hai trong ba phân thức đã cho của M=1, phân thức còn lại bằng -1
tham khảo: Câu hỏi của Nguyễn Thùy Trang
https://olm.vn/hoi-dap/detail/240354680477.html
chứng minh rằng: Nếu a, b, c là độ dài ba cạnh của tam giác thì M= 4a^2b^2-(a^2+b^2-c^2)^2 luôn luôn dương
chứng minh rằng: Nếu a, b, c là độ dài ba cạnh của tam giác thì M= 4a^2b^2-(a^2+b^2-c^2)^2 luôn luôn dương
a,c/m rằng: trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền.
b, c/m rằng: nếu tam giác abc có đường trung tuyến xuất phát từ a bằng 1 nửa cạnh bc thì đó là tam giác vuông tại a.