Cho tam giác ABC, đường cao AH (H ∈ BC) biết B H = 2 c m , H C = 5 c m . Tìm khẳng định đúng trong các khẳng định sau:
A. AB > AC
B. AB = AC
C. AB < AH < AC
D. AH < AB < AC
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết AB=6cm,AC=8cm a c/m tam giác ABC đồng dạng tam giác HBA b Tính AH,BC
a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)
cho tam giác ABC có đáy BC và đường cao tương ứng AH. Trên AH lấy điểm M sao cho AM= 1/3 MH. Tìm tỉ số diện tích 2 tam giác MBC và ABC
Cho tam giác ABC có đường cao AH . GIẢ SỬ H thuộc CẠNH BC và AH^2= BH.CH. C/m tam giác ABC vuông
CẦN GẤP
Ta có \(AH^2=BH.CH\Rightarrow\frac{BH}{AH}=\frac{AH}{CH}\)
Từ đó ta có \(\Delta BHA\sim\Delta AHC\left(c-g-c\right)\Rightarrow\widehat{BAH}=\widehat{ACH}\)
Vậy thì \(\widehat{BAC}=\widehat{BAH}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^o\)
Suy ra tam giác ABC vuông tại A.
Cho tam giác ABC cân tại A , đường cao AH (H thuộc BC)
a) c/m tam giác AHB = tam giác AHC
b) Từ H kẻ đường thẳng song song vs AC , cắt QB tại D. C/M AD=DH
c) Gọi E là trung điểm AC ; CD cắt AH tại G. C/M B,G,E thẳng hàng
a) Xét hai tam giác vuông ΔAHB và ΔAHC ta có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC ( cạnh huyền - cạnh góc vuông )
b) Ta có : ΔAHB = ΔAHC ( theo phần a )
=> Góc BAH = Góc CAH ( hai góc tương ứng ) (*)
Ta lại có: HD // AC ( GT )
=> Góc DHA = Góc CAH ( hai góc so le trong ) (**)
Từ (*) và (**) => Góc DHA = Góc BAH
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH ( theo phần a)
⇔ BH =HC ( hai cạnh tương ứng )
⇒ AH là trung tuyến ΔABC tại A (***)
Ta có : DH // AC ⇒ ∠DHB = ∠ACB ( hai góc đồng vị )
Mà ΔABC cân tại A ( GT )
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
=> DB =DH
Lại có AD = DH ( theo phần b ) => DA = DB
=> CD là trung tuyến ΔABC (****)
Từ (***) và (****) ta có:
AC cắt CD tại G => G là trọng tâm ΔABC
Mà CE = EA => BE là trung tuyến ΔABC tại B
=> BE qua G => B, G, E thẳng hàng
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
Cho Tam giác ABC vuông tại A có đường cao AH ( H thuộc BC), kẻ HD vuông góc AC tại D ( D thuộc AC). a) C/m tam giác DAH đồng dạng Tam giác HAC. b) Gọi O là trung điểm AB, OC cắt AH, HD tại K và I. C/m HI= ID. c) C/m AD.AC=BH.HC d) C/m B, K, D thẳng hàng
Cho tam giác ABC cân tại A . Biết AB =AC=5cm , BC=8cm . Kẻ Ah vuông góc vs BC (H thuộc BC ) . a) Tính AH
b) Gọi D và E là chân đường vuông góc kẻ từ H đến AB và AC . C/m tam giác HDE cân .
c) C/m : DE//BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A , đường cao AH. Biết AB=5cm BC=6cm
A)Tính BH,AH
B)Gọi G là trọng tâm tam giác ABC .C/m A,G,H thẳng hàng
C) C/m gócABG=góc ACG
Xét \(\Delta\)ABH và \(\Delta\)ACH:
AHB^ = AHC^ = 90o
AB = AC
AH chung
=> \(\Delta\)ABH = \(\Delta\)ACH (cạnh huyền_ cạnh góc vuông)
=> BH= CH (2 cạnh tương ứng)
Mà BH+CH = 6
2BH = 6
BH = 3 (cm)
Áp dụng định lý Py-ta-go vào \(\Delta\)vuông ABH:
\(AB^2=AH^2+BH^2\)
\(AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
(giải trước câu a, câu b và c lúc khác mk sẽ giải hay là bạn khác giải đi cho nhanh. Giờ mk bận rồi ^^! SORRYYYY)
b) Ta có : AH _|_ BC
BH = CH
=> AH là trung trực của \(\Delta\)ABC
=> A,G,H thẳng hàng
c) Xét \(\Delta\)ABG và \(\Delta\)ACG:
AB = AC
BAG^ = CAG^ (do \(\Delta\)ABH và \(\Delta\)ACH)
AG chung
=> \(\Delta\)ABG = \(\Delta\)ACG (c.g.c)
=> ABG^ = ACG^ (2 góc tương ứng)
cho tam giác ABC vuông tại A.Đường trung tuyến AH,đường cao AM.(H thuộc BC,M thuộc BC)
a)chứng minh tam giác ABH đồng dạng với tam giác ABC
b)chứng minh AH*AH=BH*CH
c)tính diện tích tam giác AMH biết BH=4cm,CH=9cm.
Đường trung tuyến AM đường cao AH mới đúng chứ bạn
nếu AH là đường cao, AM là đường trung tuyến mới đứng chứ!nếu vậy thì giải thế này:
a)Xét tam giác ABH và tam giác CBA
ta có góc BAC=góc AHB= 90 độ
góc B chung
Suy ra tam giác ABH đồng dạng tam giác CBA
b)vì tam giác ABH đồng dạng với tam giác CBA
GÓC BAH=GÓC ACB
xét tam giác AHB và tam giác CHA
ta có góc AHB=góc AHC=90 độ
góc BAH=góc ACH
Suy ra tam giác AHB đồng dạng với tam giác CHA
AH/HC = BH/AH
=> AH2=BH.CH
c)ta có BC=BH+CH=4+9=13
Mà AM =1/2BC=13. 1/2=6,5
ÁP dụng định lý PYTAGO vào tam giác AHM ta được:
AM2=AH2+HM2 =>HM2=AM2-AH2= 6,52-62=6.25
=>HM=2.5
Suy ra SAHM=(AH.HM) / 2 =(6 . 2,5) / 2 =7,5
cho tam giác ABC có AB=c, BC=a, AC=b. Chu vi bằng 2p. Các đường cao tương ứng:h,m,n (AH=h, BK=m, CI=n). CMR:
a) (b+c)^2 > hoặc bằng a^2 + 4h^2
b)h^2 < hoặc bằng p.(p-a)
c) h^2 + m^2 + n^2 < hoặc bằng p^2