Tren canh huyen BC cua tam giac ABC lay D va E sao cho BD=DA, CE=CA. Tinh goc DAE
tren canh huyen BC cua tam giac vuong ABC, lay cac diem D va E sao cho BD=BA, CE=CA. tinh goc DAE
cho tam giac abc can tai a co goc bac =50do tren tia doi cua tia bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ba ce=ca tinh goc dae
cho tam giac abc deu ve ben ngoai tam giac cac tam giac abd vuong can tai b tam giac ace vuong can tai c tinh so goc nhon cua ade
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
cho tam giac abc vuong tai a.tren canh huyen bc lay diem d,e sao cho bd =ba;ce=ca.tinh goc dae
cho tam giac ABC co goc A bang 120 do lay diem E tren canh Bc sao cho CE=CA. tia phan giac cua goc ACB cat AB o D
1)so sanh do dai DA va DE
2) tinh so do goc DEC
1: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
Suy ra: DA=DE
2: \(\widehat{CAD}=\widehat{CED}=120^0\)
tam giac ABC co canh BC la canh lon nhat . Tren canh BC lay diem D va E sao choa BD=BA va CE=CA . Tia phan giac cua goc B cat AE tai M; tia phan giac cua goc C cat AD tai N. Chung ming rang tia phan giac cua goc BAC vuong goc voi MN
cho tam giac ABC vuong o A. tren canh AC lay diem D sao cho goc ABD=1/3goc ABC, tren canh AB lay diem E sao cho goc ACE=1/3goc ACB. goi F la giao diem cua BD va CE.
a. tinh goc BFC
b. tia phan giac cua cac goc BFC va FBC cat nhau o I. c/m tam giac DIE la tam giac can
Cho tam giac ABC. Tren canh AB lay diem D, tren tia doi cua tia CA lay diem E sao cho CE=BD. Goi O la giao diem cua DE va BC. Chung minh rang neu tam giac ABC can tai A thi OD=OE.
1)cho tam giac abc co goc b=goc c.goi i la trung diem cua canh bc.tren canh ab laydiem d,tren tia di lay diem e sao cho i la trung diem de.cm:
a,bd=ce;
b,cb la tia phan giac cua goc ace
cho tam giac ABC co goc A=90 do va AB=AC.Tren canh AB,AC lay tuong ung 2 diem D va E sao choAD=AE.Tu A va D ke duong vuong goc voi BE cat BC tai M va N.Tia ND cat CA o I.CM:
a,A la trung diem cua CI.
b,CM=MN
1.cho tam giac ABC can tai dinh A, trung truc cua canh AC cat CB tai diem D (D nam ngoai doan BC). tren tia doi cua tia AD lay diem E sao cho AE= BD. chung minh tam giac DEC can.( goi y can chung minh CD = CE)
2. cho tam giac ABC co AB < AC, lay diem E tren canh CA sao cho CE=BA, cac duong trung truc cua cac doan thang BE va CA cat nhau tai I
a)chung minh tam giac AIB = tam giac CIE
b)chung minh AI la tia phan giac cua goc BAC