chứng tỏ rằng:
aaa chia hết cho3
ab.(a+b) chia hết cho 2 (a:b thuoc N)
. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
1. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1. Cho A= 120a+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1/ A=12(10a+3b) chia heets cho 12
2/
a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3
b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2
Cho biết (a+b)chia hết cho 5,(a,b thuoc Z tap hop so)
Chứng tỏ các biểu thức sau chia hết cho 5
a,16a-b
b,7a+23b
Cho a:b thuộc N.chứng tỏ 5a+3b và 13a+8b cùng chia hết cho 2018 thì a;b chia hết cho 2018
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
chứng tỏ rằn tổng sau a+b+c chia hết cho 3
chứng tỏ rằng ab - ba chia hết cho 9 (a >b)
tìm n (n + 3 ) chia hết cho n