Những câu hỏi liên quan
TA
Xem chi tiết
AH
30 tháng 8 2021 lúc 9:31

Lời giải:

$2Q=2x^2+2xy+2y^2-6x-6y+3998$

$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$

$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$

$\Rightarrow Q\geq 1996$

Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$

------------------

$R=(x^2+2xy+y^2)+x^2-2x+2y+15$

$=(x+y)^2+2(x+y)+x^2-4x+15$

$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$

$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$

$\Leftrightarrow x=2; y=-3$

Bình luận (2)
NY
Xem chi tiết
TT
Xem chi tiết
NO
13 tháng 8 2017 lúc 16:38

a) x + y = 6 và xy = 8 => x = 2; y = 4

2+ 42 = 4 + 16 = 20

Bình luận (0)
DD
12 tháng 8 2019 lúc 16:38

a) x^2+y^2= (x+y)^2-2xy

                 =36-2.8=20

b)x^3-y^3=(x-y)^3+3xy.(x-y)

                =323+3.8.7=511

Bình luận (0)
LT
Xem chi tiết
DH
10 tháng 7 2018 lúc 20:23

\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)

=> Biểu thức A phụ thuộc vào giá trị của y

Bình luận (0)
DH
10 tháng 7 2018 lúc 20:21

\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)

Bình luận (0)
LT
11 tháng 7 2018 lúc 14:46

Đàm Thị Minh Phương bạn có thể giải chi tiết ra giúp mình được không ??

Bình luận (0)
H24
Xem chi tiết
HV
Xem chi tiết
N0
Xem chi tiết
HH
14 tháng 7 2017 lúc 14:12

Từ \(\hept{\begin{cases}x-y=-10\\xy=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y-10\\\left(y-10\right)y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=y-10\\y^2-10y+2=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=y-10\\y=5+\sqrt{23};y=5-\sqrt{23}\end{cases}\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{23};y=5+\sqrt{23}\\x=-5-\sqrt{23};y=5-\sqrt{23}\end{cases}}}\)

Với \(x=-5+\sqrt{23};y=5+\sqrt{23}\Rightarrow\left|x+y\right|=2\sqrt{23}\)

Với \(x=-5-\sqrt{23};y=5-\sqrt{23}\Rightarrow\left|x+y\right|=\left|-2\sqrt{23}\right|=2\sqrt{23}\)

Bình luận (0)
N0
14 tháng 7 2017 lúc 20:10

Thanks 

Bình luận (0)
AD
Xem chi tiết
TH
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)
NH
Xem chi tiết
TD
18 tháng 5 2019 lúc 20:25

1.a) xy + 2y - x2 + 4

= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )

b) 2x2 + y2 + 3xy

= ( 2x2 + 2xy ) + ( y2 + xy )

= 2x ( x + y ) + y ( x + y )

= ( x + y ) ( 2x + y )

2.

x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31

A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37

Bình luận (0)