Có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đến 5; 4 viên bi vàng được đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra ba viên bi vừa khác màu, vừa khác số?
A. 64.
B. 120.
C. 40.
D. 20.
Trên bàn có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đế 5; 4 viên bi vàng được đánh số từ 1 đến 4.
a/ Hỏi có bao nhiêu cách lấy ra 1 viên bi?
A. 64.
B. 15.
C. 11.
D. 9.
Đáp án : B
a/ Theo quy tắc cộng có 4+5+6 = 15 cách lấy ra một bi.
Có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đến 5; 4 viên bi vàng được đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra ba viên bi vừa khác màu, vừa khác số?
A. 64
B. 120
C. 40
D. 20
Đáp án A
+ Sắp xếp các viên bi thành ba hàng lần lượt là hàng 1 gồm 4 viên vi vàng đánh số từ 1 đến 4; hàng 2 gồm các 5 viên bi đỏ đánh số từ 1 đến 5, hàng 3 gồm 6 viên bi xanh đánh số từ 1 đến 6 (đóng thẳng cột như hình vẽ).
+ Việc lựa chọn tiến hành theo ba bước sau:
Bước 1: Chọn 1 viên bi vàng ở hàng thứ nhất: có 4 cách thực hiện.
Sau đó ta xóa đi cột chứa viên bi vàng vừa được chọn.
Bước 2: Chọn 1 viên bi đỏ từ hàng thứ hai từ 4 viên bi đỏ còn lại (1 viên bi đỏ bị loại bỏ sau bước thứ nhất): có 4 cách thực hiện.
Sau đó ta tiếp tục xóa cột chứa viên bi đỏ vừa được chọn.
Bước 3: Chọn 1 viên bi xanh từ 4 viên bi xanh còn lại ở hàng thứ ba: có 4 cách chọn.
Vậy theo quy tắc nhân, có: 4.4.4 = 64 cách chọn thỏa mãn.
Trên bàn có 6 viên bi xanh được đánh số từ 1 đến 6; 5 viên bi đỏ được đánh số từ 1 đế 5; 4 viên bi vàng được đánh số từ 1 đến 4.
Hỏi có bao nhiêu cách lấy ra ba viên bi khác mầu ?
A. 64.
B. 324.
C. 30.
D. 120.
Đáp án: D
b/ Việc lựa chọn tiến hành theo ba bước sau:
Bước 1: Chọn 1 viên bi xanh bất kì: có 6 cách thực hiện.
Bước 2: Chọn 1 viên bi đỏ bất kì: có 5 cách thực hiện.
Bước 3: Chọn 1 viên bi vàng bất kì: có 4 cách thực hiện.
Vậy theo quy tắc nhân có: 6.5.4=120 cách chọn.
Một hộp đựng 8 viên bi đỏ được đánh số từ 1 đến 8, 6 viên bi xanh được đánh số từ 1 đến 6, 10 viên bi vàng được đánh số từ 1 đến 10. Hỏi có bao ngiêu cách chọn 3 viên bi sao cho 3 viên bi khác màu, khác số
Có \(C_{24}^3\) cách chọn 3 viên bất kì.
Có \(C_8^3+C_6^3+C_{10}^3\) cách họn 3 viên bi cùng màu.
Có 6 cách chọn 3 viên bi cùng số.
\(\Rightarrow\) Có \(C_{24}^3-\left(C_8^3+C_6^3+C_{10}^3\right)-6=1822\) cách chọn 3 viên bi khác màu, khác số.
Chọn 1 viên xanh: có 6 cách
Chọn 1 viên đỏ khác số viên xanh: 7 cách
Chọn 1 viên vàng khác số viên xanh và đỏ: 8 cách
Tổng cộng: \(6.7.8=336\) cách
Một hộp đựng 21 viên bi gồm 6 bi đỏ được đánh số từ 1 đến 6; 7 bi xanh được đánh số từ 1 đến 7 và 8 bi vàng được đánh số từ 1 đến 8. Chọn ngẫu nhiên 4 viên bi, xác suất để lấy ra 4 viên bi có đủ cả ba màu và có cả viên bi đánh số chẵn lẫn viên bi đánh số lẻ bằng
A. 451/504.
B. 49/95.
C. 902/1995.
D. 106/1995
Một hộp có hai bi trắng được đánh số từ 1 đến 2, 3 viên bi xanh được đánh số từ 3 đến 5 và 2 viên bi đỏ được đánh số từ 6 đến 7. Lấy ngẫu nhiên hai viên bi
a) Mô tả không gian mẫu
A. Ω={(m,n)|1≤m≤7,1≤n≤7}
B. Ω={(m,n)|1≤m≤7,1≤n≤7,m≠n}
C. Ω={(m,n)|1≤m≤5,6≤n≤7}
D. Ω={(m,n)|1≤m≤3,4≤n≤7}
a. Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau. Vậy
Ω={(m,n)|1≤n≤7 và m≠n}
Chọn B
Một hộp có hai bi trắng được đánh số từ 1 đến 2, 3 viên bi xanh được đánh số từ 3 đến 5 và 2 viên bi đỏ được đánh số từ 6 đến 7. Lấy ngẫu nhiên hai viên bi
b) Số phần tử của không gian mẫu là:
A. 49
B. 42
C. 10
D. 12
b. Mỗi phần tử của không gian mẫu là một chỉnh hợp chập 2 của 7
vì vậy số phần tử của không gian mẫu là A72= 7.6=42
Chọn B
Một hộp đựng 7 viên bi đỏ đánh số từ 1 đến 7 và 6 viên bi xanh đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn hai viên bi từ hộp đó sao cho chúng khác màu và khác số?
A. 36
B. 42
C. 49
D. 30
Chọn A
Gọi x là số lần viên bi đỏ được chọn.
Gọi y là số lần viên bi xanh được chọn.
TH1. 1 ≤ x ≤ 6.
Có 6 cách chọn viên đỏ.
Có 5 cách chọn viên xanh.
=> Có 5.6 = 30 cách.
TH2. x = 7.
Có 6 cách chọn viên xanh.
=> Có 6 cách.
Vậy có 36 cách chọn.
Một hộp đựng 7 viên bi đỏ đánh số từ 1 đến 7 và 6 viên bi xanh đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn hai viên bi từ hộp đó sao cho chúng khác màu và khác số.
A. 36
B. 42
C. 4
D. 30
Phương pháp:
Sử dụng quy tắc cộng và quy tắc nhân để làm bài toán.
Cách giải:
Vì số viên bi xanh ít hơn số viên bi đỏ nên ta lấy số viên bi xanh trước, số cách lấy 1 viên bi xanh có 6 cách .
Số cách lấy 1 viên bi đỏ và số của viên bi đỏ phải khác số của viên bi xanh đã lấy có 6 cách.
Như vậy có: 6 x 6 = 36 cách.
Chọn: A