( x + 2 ) n + 5 , ( n ∈ ℕ ) Khai triển nhị thức có tất cả 2019 số hạng. Tìm n.
A. 2018
B. 2014
C. 2013
D. 2015
Tính:
a) \(3{x^5}.5{x^8}\);
b) \( - 2{x^{m + 2}}.4{x^{n - 2}}\) (m, n \(\in\) N; n > 2).
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).
chứng minh : (n-1).(n+1)-(n-7).(n-5) ⋮12
(n2+3n-1).(n+2)-n3+2 ⋮5
tìm x : (x+2).(x+3)-(x-2).(x+5)=0
(8-5x).(x-2)-7=x.(4-5x)+3
(3+x).(2x-1)-3.(x-3).(x+2)=4
1,Giải PT sau
\n\na,(x-1)2+(x+3)2=2(x-2)(x+1)+38
\n\nb,5(x2-2x-1)+2(3x-2)=5(x+1)2
\n\nc,(x-3)3-2(x-1)=x(x-2)2-5x2
\n\nd,x(x+3)2-3x=(x+2)3+1
\n\ne,\\(\\frac{\\left(x-1\\right)\\left(x+5\\right)}{3}-\\frac{\\left(x+2\\right)\\left(x+5\\right)}{12}=\\frac{\\left(x-1\\right)\\left(x+2\\right)}{4}\\)
\n\n\n
1. Tìm x biết :
a) 3 mũ 2 nhân 2 mũ 5 - ( 3 nhân 6 mũ 2 - x ) = 120
b) ( x + 3 ) nhân 2 mũ 3 - 2 mũ 2 nhân 5 = 2 mũ 2 nhân 3 nhân 5
2. Tìm x biết :
a) 5 mũ x -1 - 13 = 612
b) 5 mũ x nhân 5 mũ 3 = 125
1.
a) \(3^2\cdot2^5-\left(3\cdot6^2-x\right)=120\\ 9\cdot32-\left(3\cdot36-x\right)=120\\ 288-\left(108-x\right)=120\\ 288-108+x=120\\ 180+x=120\\ \Rightarrow x=-60\)
Vậy x = -60
b) \(\left(x+3\right)\cdot2^3-2^2\cdot5=2^2\cdot3^5\\ \left(x+3\right)\cdot8-4\cdot5=4\cdot243\\ \left(x+3\right)\cdot8-20=972\\ \Rightarrow8\left(x+3\right)=992\\ \Rightarrow x+3=124\\ \Rightarrow x=121\)
Vậy x = 121
2.
a) \(5^{x-1}-13=612\\ \Rightarrow5^{x-1}=625=5^3\\ \Rightarrow x-1=3\\ \Rightarrow x=4\)
Vậy x = 4
b) \(5^x\cdot5^3=125\\ 5^{x+3}=5^3\\ \Rightarrow x+3=3\\ \Rightarrow x=0\)
Vậy x = 0
A=5^0+5^2+5^4+...+5^x (x thuộc N;x lớn hơn hoặc bằng 2)
A=5^1+5^3+5^5+...+5^x (x thuộc N;x lớn hơn hoặc bằng 2)
A=5^1+5^3+5^5+...+5^x (x thuộc N;x lớn hơn hoặc bằng 2)
CẦN GẤP MAI NỘP RỒI
1. tìm x biết x+2/327 + x+3/326 + x+4/325 + x+5/324 + x+349/5 = 0
2.CMR:n thuộc N* thì 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10
Chứng Minh rằng các biểu thức sau không phụ thuộc vào biến
A=x(x + 2y) - 2x (3x - y) + 5 (x^2 - xy) - (20 - xy)
B=x^2 (2x - 3) -x (2x^2 + 5) + 3x^2 + 5x + 20
C=5(3x^n - y^(n-2) )+3(x^n +5y^(n-2))-b(3x^n+2y^(n-2)) - (3n^n-10)
A=x(x + 2y) - 2x (3x - y) + 5 (x2 - xy) - (20 - xy)
=x2+2xy-6x2+2xy+5x2-5xy-20+xy
=-20
B=x2 (2x - 3) -x (2x2 + 5) + 3x2 + 5x + 20
=2x3-3x2-2x3+-5x+3x2+5x+20
Câu cuối bạn viết ko rõ
bài 1:tính
a)2x2+3(x-1)(x+1)-5x(x+1)
b)4(x-1)(x+5)-(x-2)(x+5)-3(x-1)(x+2)
bài 2:tìm x
a)(8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0
b)(x+3)(x+2)-(x-2)(x+5)=0
bài 3:chứng minh rằng mọi số nguyên n thì :
a)A=(n2+3n-1)(n+2)-n3+2 chia hết cho 5
b) B=(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
Bài 1.
a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )
= 2x2 + 3( x2 - 1 ) - 5x2 - 5x
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -5x - 3
b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6
= 10x - 4
Bài 2.
a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0
<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0
<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x( x - 6 ) = 0
<=> x = 0 hoặc x = 6
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0
<=> x2 + 5x + 6 - x2 - 3x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
Bài 3.
A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2
= 5n2 + 5n
= 5n( n + 1 ) chia hết cho 5 ( đpcm )
B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )
= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )
= 6n2 + 31n + 5 - 6n2 - 7n + 5
= 24n + 10
= 2( 12n + 5 ) chia hết cho 2 ( đpcm )
bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=-3-5x\)
b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)
\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)
\(=10x-4\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)
\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
\\(\\lim\\limits_{x\\rightarrow-\\infty}\\left(2x^3-x^2+3x-5\\right)\\)
\n\n\\(\\lim\\limits_{x\\rightarrow2}\\frac{3}{\\left(x-2\\right)\\left(x^2-3x+2\\right)}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow0}\\frac{x^2-5}{x^5+x^4}\\)
\nChứng minh :
1. x( x^2 + x + 1 ) - x^2 ( x + 1 ) - x + 5 ko phụ thuộc vào biến x.
2. n( n + 5 ) - ( n - 3 )( n + 2 ) luôn chia hết cho 6 vs mọi số nguyên n.
1)x( x^2 + x + 1 ) - x^2 ( x + 1 ) - x + 5
=x3+x2+x-x2-x3-x+5
=(x3-x3)+(x2-x2)+(x-x)+5
=5
2)n( n + 5 ) - ( n - 3 )( n + 2 )
=n2+5n-n2+n+6
=(n2-n2)+5n+n+6
=6n+6
=6(n+1) chia hết 6 với mọi n