Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 6 2018 lúc 2:18

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 9 2019 lúc 16:26

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 8 2018 lúc 4:57

Đáp án B

Bình luận (0)
TC
Xem chi tiết
DH
1 tháng 2 2022 lúc 15:30

Gọi N, Q lần lượt là trung điểm của AB , CD \(\Rightarrow\left\{{}\begin{matrix}MN\perp AB\\MQ\perp AB\end{matrix}\right.\)

Qua N kẻ đường thẳng song song với BC , cắt SC tại P

suy ra thiết diện của mặt phẳng (\(\alpha\) ) và hình chóp là MNPQ

Vì MQ là đường t/b của hình thang ABCD , \(\Rightarrow MQ=\dfrac{3a}{2}\)

MN là đường t/b của tam giác SAB; \(MN=\dfrac{SA}{2}=a\)

NP là đường t/b của tam giác SBC ; \(\Rightarrow NP=\dfrac{BC}{2}=\dfrac{a}{2}\)

Vậy diện tích hình thang MNPQ là : \(S_{MNPQ}=\dfrac{MN.\left(NP+MQ\right)}{2}=\dfrac{a}{2}.\left(\dfrac{a}{2}+\dfrac{3a}{2}\right)=a^2\)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 12 2018 lúc 8:49

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 7:35

Đáp án đúng : A

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 2 2019 lúc 18:03

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).

b) Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ BD ⊥ SC

Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).

Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)

Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).

Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).

Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2019 lúc 12:14

Chọn A.

Dựng   SH ⊥ AC ,   do   ( SAC ) ⊥ ( ABC )   nên   SH ⊥ ( ABC ) ; AC = 2 a .     Dựng   HE ⊥ BC ; HF ⊥ SE ⇒ d ( H ; ( SBC ) ) = HF .     ΔSAC = ΔBCA ⇒ ΔSAC   vuông   tại   S .

Dễ   thấy   tan   ACB ^ =   1 3   ⇒   ACB ^   =   30 o   =   SAC ^ HC   =   SCcos 60 o   =   a 2 ;   HE   =   HCsin 30 o   = a 4 ;   SH   =   a 3 2 . Do   AC   =   4 HC   ⇒ d A = 4 d H = 4 . SH . HE SH 2 + HE 2 = 2 39 13 Do   đó   Sinα   = d A SA = 2 13 .

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 3 2018 lúc 16:42

Đáp án C

Bình luận (0)