Giả sử x là nghiệm của phương trình log x 25 - log x 4 = log x x . Tính x 1 2
A. 21
B. 5 2
C. 25 4
D. 625 16
Tìm tập nghiệm của phương trình l o g ( x + 3 ) + l o g ( x - 1 ) = l o g ( x 2 - 2 x - 3 )
A. ∅
B. {0}
C. R
D. (1; +∞)
Giả sử x là nghiệm của phương trình: l g 1 + x + 3 l g 1 - x = l g 1 - x 2 + 2
Khi đó ta có
A. lg(1 - x) = 1
B. l g ( 1 - x ) = 3
C. lg(1 - x) < 1
D. l g ( 1 - x ) > 3
Giả sử x 1 , x 2 là các nghiệm của phương trình x 2 - x - 3 .
Giá trị của biểu thức 1 x 1 + 1 x 2 là
A. 1 3
B. - 1 3
C. 3
D. - 3
Giả sử ( \(x_0\),y\(_0\) ) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=13\\x^2+y^2=25\end{matrix}\right.\) Giá trị nhỏ nhất của tổng \(T=x_0+y_0\) là
Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)
$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:
$a^2+2(13-a)=25$
$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$
$\Leftrightarrow a=1$
$\Rightarrow b=12$
Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$
$\Leftrightarrow y^2+y-12=0$
$\Leftrightarrow (y-3)(y+4)=0$
$\Rightarrow y=3$ hoặc $y=-4$
Vậy $(x,y)=(4,3); (-3,-4)$
Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$
Giả sử x1, x2 là 2 nghiệm của phương trình : x^2 +2kx +4 = 4.
Tìm tất cả cácgiá trị của k sao cho có bất đẳng thức:
(x1/x2)^2 + (x2/x1)^2 >= 3
\(x^2-\left(m+4\right)x+m^2+2m-1=0\). Giả sử \(x_0\) là nghiệm của phương trình đã cho. Tìm GTLN và GTNN của \(x_0\)
Do x0 là nghiệm của phương tình x2-m(m+4)x+m2+2m-1=0 nên tồn tại m để x02 -(m+4)x0+m2+2m-1=0
<=> m2+(2-x0)m+x02-4x0 -1=0 có nghiệm
<=> (2-x0)2 -4(x02-4x0-1) >=0
<=> -3x02+12x0+8 >=0
<=> \(\frac{6-2\sqrt{15}}{3}\le x_0\le\frac{6+2\sqrt{15}}{3}\)
Tự xử lý phần dấu "="
Đề bài
Giải mỗi phương trình sau:
a) \({\left( {0,3} \right)^{x - 3}} = 1\)
b) \({5^{3x - 2}} = 25\)
c) \({9^{x - 2}} = {243^{x + 1}}\)
d) \({\log _{\frac{1}{x}}}(x + 1) = - 3\)
e) \({\log _5}(3x - 5) = {\log _5}(2x + 1)\)
f) \({\log _{\frac{1}{7}}}(x + 9) = {\log _{\frac{1}{7}}}(2x - 1)\)
\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)
d, Điều kiện: \(x>-1;x\ne0\)
\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)
e, Điều kiện: \(x>\dfrac{5}{3}\)
\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)
f, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)
Giải mỗi phương trình sau:
a) \({\log _5}\left( {2x - 4} \right) + {\log _{\frac{1}{5}}}\left( {x - 1} \right) = 0\)
b) \({\log _2}x + {\log _4}x = 3\)
a)
ĐK: \(\left\{{}\begin{matrix}2x-4>0\\x-1>0\end{matrix}\right.\Leftrightarrow x>1\)
\(\log_5\left(2x-4\right)+\log_{\dfrac{1}{5}}\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(2x-4\right)-\log_5\left(x-1\right)=0\\ \Leftrightarrow\log_5\left(\dfrac{2x-4}{x-1}\right)=\log_51\\ \Leftrightarrow\dfrac{2x-4}{x-1}=1\\ \Leftrightarrow2x-4=x-1\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy x = 3.
b) ĐK: x > 0
\(\log_2x+\log_4x=3\\ \Leftrightarrow\log_2x+\dfrac{1}{2}\log_2x=3\\ \Leftrightarrow\left(1+\dfrac{1}{2}\right)\log_2x=3\\ \Leftrightarrow\dfrac{3}{2}\log_2x=3\\ \Leftrightarrow\log_2x=2\\ \Leftrightarrow x=4\left(tm\right)\)
Vậy x= 4
Giải các phương trình sau:
a) \({\log _6}\left( {4{\rm{x}} + 4} \right) = 2\);
b) \({\log _3}x - {\log _3}\left( {x - 2} \right) = 1\).
a, ĐK: \(4x+4>0\Rightarrow x>-1\)
\(log_6\left(4x+4\right)=2\\ \Leftrightarrow4x+4=36\\ \Leftrightarrow4x=32\\ \Leftrightarrow x=8\left(tm\right)\)
Vậy x = 8.
b, ĐK: \(x-2>0\Rightarrow x>2\)
\(log_3x-log_3\left(x-2\right)=1\\ \Leftrightarrow log_3\left(x^2-2x\right)=1\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy x = 3.