so sánh
a)n+1/n+2 và n/n+3(n thuộc N*)
b)a+m/a+n và a/b(a, b, m thuộc N*)
so sánh phân số : M=1+2+3+...+a/a và N=1+2+3+...+b/b(a;b thuộc N,a bé hơn b
Cho a^m=a^n (a thuộc Q; m,n thuộc N) tìm các số m và n
cho a^m>a^n (a thuộc Q ; a>0;m,n thuộc N) so sánh m và n
cho 3 số a,m,n thuộc n* hãy so sánh 2 tổng sau:
2012/a^m+2012/a^n và b=2011/a^m+2013/a^n
các bạn giải giùm mình nha.mình đang cần gấp
so sánh:
:a^2 +b^2 và (a + b)^2 ,với a thuộc N* và b thuộc N*
\(\left(a+b\right)^2=a^2+b^2+2ab\)
Mà \(a,b\in\) N*
⇒2ab>0
⇒\(a^2+b^2+2ab>a^2+b^2\)
a) cho a/b < 1 ( a,b thuộc N b khác 0)
CM a/b < a+n/b+n (n thuộc Z)
Vận dụng so sánh:
A= 15^18+1/15^17+1 và B= 15^17+1/15^18+1
b) cho a/b > 1 ( a,b thuộc N b khác 0)
CM a/b >a+n/b+n (n thuộc Z)
Vận dụng so sánh:
C= 100^90+1/100^89+1 và D= 100^89+1/100^88+1
Cho a,b,n thuộc Z; b,n>0.
a) Chứng minh: \(\dfrac{a}{b}>1\Leftrightarrow a>b\) và \(\dfrac{a}{b}< 1\Leftrightarrow a< b\)
b) So sánh 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
c) So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+n}{a+n}\)
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
a)So sánh a/b (b<0) và a+n/b+n(n<0)
b)So sánh a/b(b>0) và a-n/b-n(n thuộc N*,n<a,n<b)
a, trường hợp 1 :
a<b ta có :
ab+an<ab+bn
a.(b+n) < b(a+n)
a/b<a+n/b+
th2 bạn làm tương tử nhé thay dấu lớn thui phần b y hệt a nhé 100% đấy hum nay mình vừa học xong
So sánh: a/b và a+n/b+n (b>0; n thuộc N*; a, b thuộc Z)
TH1: Nếu a>b ( a/b > 1 )=> a.n > b.n
hay a.n+a.b > b.n+a.b (cùng cộng a.b )
a.(n+b) > b.(n+a)
=> a/b > n+a/n+b
TH2: Nếu a<b (a/b<1)=> a.n < b.n
hay a.n+a.b<b.n+a.b
a.(n+b)<b.(n+a)
=> a/b < a+n/b+n
Tương tự nếu a=b thì ta có a/b=a+n/b+n
a, Cho \(a^m=a^n\)( a \(\in\)Q; m,n \(\in\)N) Tìm các số m và n
b, Cho \(a^m>a^n\)( a thuộc Q, a> 0; m,n thuộc N) So sánh m và n