Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KL
Xem chi tiết
HQ
18 tháng 5 2021 lúc 18:27

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 5 2021 lúc 19:23

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HQ
12 tháng 7 2021 lúc 8:50

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\hept{\begin{cases}6x+3y=57\\6x-4y=22\end{cases}\hept{\begin{cases}7y=35\\3x-2y=11\end{cases}}}}\)

\(\hept{\begin{cases}y=5\\3x-2.5=11\end{cases}\hept{\begin{cases}y=5\\3x=21\end{cases}\hept{\begin{cases}y=5\\x=7\end{cases}}}}\)

\(a=1,b=20;c=-21\)

\(\Delta=\left(20\right)^2-\left(4.1.-21\right)=484\)

\(\sqrt{\Delta}=\sqrt{484}=22\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-20+22}{2}=1\left(TM\right)\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=-21\left(TM\right)\)

\(3,x^4-20x^2+64=0\)

đặt \(x^2=a\)ta có pt

\(a^2-20a+64=0\)

\(a=1;b=-20;c=64\)

\(\Delta=\left(-20\right)^2-\left(4.1.64\right)=144\)

\(\sqrt{\Delta}=12\)

\(a_1=\frac{-b+\sqrt{\Delta}}{2a}=16\left(TM\right)\)

\(a_2=\frac{-b-\sqrt{\Delta}}{2a}=4\left(TM\right)\)

\(< =>x_1=\sqrt{16}=4\left(TM\right)\)

\(x_2=\sqrt{4}=2\left(TM\right)\)

vậy bộ n0 của pt là (\(4;2\))

Bình luận (0)
 Khách vãng lai đã xóa
HY
Xem chi tiết
KL
3 tháng 2 2021 lúc 8:46

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

Bình luận (0)
KL
3 tháng 2 2021 lúc 9:17

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

Bình luận (1)
KL
3 tháng 2 2021 lúc 9:18

Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@

Bình luận (0)
NN
Xem chi tiết
SA
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Bình luận (0)
NP
Xem chi tiết
NP
15 tháng 3 2021 lúc 20:46

ai giải mk vs ạ

 

Bình luận (0)
H24
15 tháng 3 2021 lúc 20:48
answer-reply-imageBn tham khảo nhé!
Bình luận (0)
UP
15 tháng 3 2021 lúc 20:50

undefined

Bình luận (0)
ND
Xem chi tiết
H24
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Bình luận (0)
KH
Xem chi tiết
NQ
19 tháng 1 2021 lúc 0:59

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
7 tháng 8 2019 lúc 10:36

c) Hệ phương trình đã cho có nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Theo đề bài : x= y

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì hệ phương trình có nghiệm (x; y) thỏa mãn x = 2 y

Bình luận (0)
NY
Xem chi tiết
VL
Xem chi tiết
NT
1 tháng 4 2022 lúc 12:35

a, bạn tự giải 

b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)

Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)

bạn ktra lại đề nhé 

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 1 2017 lúc 18:04

Đáp án B

Bình luận (0)