Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 8 2018 lúc 8:31

Ta có 

Bảng biến thiên của hàm số y= g( x)

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2018 lúc 7:34

 Đáp án D

Phương pháp:

Đánh giá từng đáp án.

Cách giải:

(1) Hàm số y = log2x đồng biến trên khoảng (0;+∞): đúng, do 2 > 1

(2) Hàm số y = log2x có một điểm cực tiểu: sai, hàm số y = log2x luôn đồng biến trên (0;+∞)

(3) Đồ thị hàm số y = log2x có tiệm cận: đúng, tiệm cận đó là đường x = 0

Số phát biểu đúng là 2.

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
11 tháng 7 2017 lúc 12:20

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2018 lúc 14:43

Đáp án C

Cả hai khẳng định đều sai vì thiếu điều kiện hàm số liên tục.

 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 12 2018 lúc 16:21

y’= -2f’(x) nên hàm số nghịch biến trên (-∞;-2),(-1;2) và (4;+∞). 

Chọn đáp án B.

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 11:39

a) Khi \(x\) càng gần đến 1 thì giá trị của hàm số càng gần đến 4.

b) Khi điểm \(H\) thay đổi gần về điểm \(\left( {1;0} \right)\) trên trục hoành thì điểm \(P\) càng gần đến điểm \(\left( {0;4} \right)\).

Bình luận (0)
AV
Xem chi tiết
NT
22 tháng 7 2021 lúc 23:52

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

Bình luận (0)
TL
22 tháng 7 2021 lúc 10:55

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2018 lúc 16:59

Đáp án là B

Bình luận (0)